更改

添加233字节 、 2020年7月18日 (六) 10:59
无编辑摘要
第32行: 第32行:  
In other words, in a nonlinear system of equations, the equation(s) to be solved cannot be written as a linear combination of the unknown variables or functions that appear in them. Systems can be defined as nonlinear, regardless of whether known linear functions appear in the equations. In particular, a differential equation is linear if it is linear in terms of the unknown function and its derivatives, even if nonlinear in terms of the other variables appearing in it.
 
In other words, in a nonlinear system of equations, the equation(s) to be solved cannot be written as a linear combination of the unknown variables or functions that appear in them. Systems can be defined as nonlinear, regardless of whether known linear functions appear in the equations. In particular, a differential equation is linear if it is linear in terms of the unknown function and its derivatives, even if nonlinear in terms of the other variables appearing in it.
   −
换句话说,在非线性方程系统中,<font color='red'>要求解</font> <font color='blue'>待解</font>的方程不能被写成未知变量或函数的线性组合。无论方程中是否有已知的线性函数,系统都可以被定义为非线性。特别是当一个微分方程的未知函数及其导数是线性的,即使其他变量是非线性的,也称该方程是线性的。
+
换句话说,在非线性方程系统中,<font color='red'>要求解</font> <font color='blue'>待解</font> 的方程不能被写成未知变量或函数的线性组合。无论方程中是否有已知的线性函数,系统都可以被定义为非线性。特别是当一个微分方程的未知函数及其导数是线性的,即使其他变量是非线性的,也称该方程是线性的。
 
  −
 
  −
 
        第42行: 第39行:  
As nonlinear dynamical equations are difficult to solve, nonlinear systems are commonly approximated by linear equations (linearization). This works well up to some accuracy and some range for the input values, but some interesting phenomena such as solitons, chaos, and singularities are hidden by linearization. It follows that some aspects of the dynamic behavior of a nonlinear system can appear to be counterintuitive, unpredictable or even chaotic. Although such chaotic behavior may resemble random behavior, it is in fact not random. For example, some aspects of the weather are seen to be chaotic, where simple changes in one part of the system produce complex effects throughout. This nonlinearity is one of the reasons why accurate long-term forecasts are impossible with current technology.
 
As nonlinear dynamical equations are difficult to solve, nonlinear systems are commonly approximated by linear equations (linearization). This works well up to some accuracy and some range for the input values, but some interesting phenomena such as solitons, chaos, and singularities are hidden by linearization. It follows that some aspects of the dynamic behavior of a nonlinear system can appear to be counterintuitive, unpredictable or even chaotic. Although such chaotic behavior may resemble random behavior, it is in fact not random. For example, some aspects of the weather are seen to be chaotic, where simple changes in one part of the system produce complex effects throughout. This nonlinearity is one of the reasons why accurate long-term forecasts are impossible with current technology.
   −
由于非线性动力学方程难以求解,通常用线性化方程来近似非线性系统('''线性化 Linearization''')。这种方法在一定的精度和范围对输入值效果很好,但一些有趣的现象如'''孤子 Soliton'''、'''混沌 Chaos'''和'''奇异性 Singularity'''在线性化后被隐藏。因此,非线性系统的动态行为在某些方面可能看起来违反直觉、不可预测、甚至混沌。尽管这种混沌行为可能感觉很像随机行为,但它实际上并不是随机的。例如,天气的某些方面被认为是混沌的,其系统某部分的微小扰动就会产生复杂的影响。这种非线性是目前技术无法进行精确长期预测的原因之一。
+
由于非线性动力学方程难以求解,通常用线性<font color='red'><s>化<s>(这种解法是线性化(linearization),此处还是按linear来翻吧)</font>方程来近似非线性系统('''线性化 Linearization''')。<font color='red'>这种方法在一定的精度和范围对输入值效果很好</font> <font color='blue'>这种方法对于一定范围的输入和某些精度要求下的效果不错</blue>,但一些有趣的现象如'''孤子 Soliton'''、'''混沌 Chaos'''和'''奇异性 Singularity'''在线性化后被隐藏。因此,非线性系统的动态行为在某些方面可能看起来违反直觉、不可预测、甚至混沌。尽管这种混沌行为可能感觉很像随机行为,但它实际上并不是随机的。例如,天气的某些方面被认为是混沌的,其系统某部分的微小扰动就会产生复杂的影响。这种非线性是目前技术无法进行精确长期预测的原因之一。
     
106

个编辑