更改

添加59字节 、 2020年7月18日 (六) 11:37
无编辑摘要
第128行: 第128行:  
The definition <math>f(x) = C</math> is very general in that <math>x</math> can be any sensible mathematical object (number, vector, function, etc.), and the function <math>f(x)</math> can literally be any mapping, including integration or differentiation with associated constraints (such as boundary values). If <math>f(x)</math> contains differentiation with respect to <math>x</math>, the result will be a differential equation.
 
The definition <math>f(x) = C</math> is very general in that <math>x</math> can be any sensible mathematical object (number, vector, function, etc.), and the function <math>f(x)</math> can literally be any mapping, including integration or differentiation with associated constraints (such as boundary values). If <math>f(x)</math> contains differentiation with respect to <math>x</math>, the result will be a differential equation.
   −
定义 <math>f(x) = C</math> 是非常具有一般性的,因为 <math>x</math> 可以是任意可感知的数学对象(数字、向量、函数等),函数 <math>f(x)</math> 实际上可以是任意映射,包括有相关约束(如给定边界值)的积分或微分。若 <math>f(x)</math> 包含对 <math>x</math> 的微分运算,则该方程为微分方程。
+
定义 <math>f(x) = C</math> 是非常具有一般性的,因为 <math>x</math> 可以是任意<font color='red'>可感知</font><font color='blue'> 合理 </font>的数学对象(数字、向量、函数等),函数 <math>f(x)</math> 实际上可以是任意映射,包括有相关约束(如给定边界值)的积分或微分。若 <math>f(x)</math> 包含对 <math>x</math> 的微分运算,则该方程为微分方程。
     
106

个编辑