更改

添加150字节 、 2020年7月19日 (日) 13:21
无编辑摘要
第201行: 第201行:  
One of the greatest difficulties of nonlinear problems is that it is not generally possible to combine known solutions into new solutions. In linear problems, for example, a family of linearly independent solutions can be used to construct general solutions through the superposition principle. A good example of this is one-dimensional heat transport with Dirichlet boundary conditions, the solution of which can be written as a time-dependent linear combination of sinusoids of differing frequencies; this makes solutions very flexible. It is often possible to find several very specific solutions to nonlinear equations, however the lack of a superposition principle prevents the construction of new solutions.
 
One of the greatest difficulties of nonlinear problems is that it is not generally possible to combine known solutions into new solutions. In linear problems, for example, a family of linearly independent solutions can be used to construct general solutions through the superposition principle. A good example of this is one-dimensional heat transport with Dirichlet boundary conditions, the solution of which can be written as a time-dependent linear combination of sinusoids of differing frequencies; this makes solutions very flexible. It is often possible to find several very specific solutions to nonlinear equations, however the lack of a superposition principle prevents the construction of new solutions.
   −
非线性问题最大的困难之一是通常不可能将已知的解组合成新的解。例如,在线性问题中,可以根据叠加原理以一族线性独立的解构造通解。一个很好的例子是带有'''狄利克雷边界条件 Dirichlet Boundary Conditions'''的一维热传导问题,其解(随时间变化)可以写成不同频率的正弦波的线性组合,这使得解非常灵活。而对非线性方程,通常可以找到几个非常特殊的解,但是此时叠加原理不适用,故无法构造新的解。
+
非线性问题最大的困难之一是通常不可能将已知的解组合成新的解。例如,在线性问题中,可以根据叠加原理以一族线性独立的解构造通解。一个很好的例子是带有'''狄利克雷边界条件 Dirichlet Boundary Conditions'''的一维热传导问题,其解<font color='red'><s>(随时间变化)</s></font>可以写成<font color='blue'>(随时间变化)</font>不同频率的正弦波的线性组合,这使得解非常灵活。而对非线性方程,通常可以找到几个非常特殊的解,但是此时叠加原理不适用,故无法构造新的解。
      第213行: 第213行:  
First order ordinary differential equations are often exactly solvable by separation of variables, especially for autonomous equations. For example, the nonlinear equation
 
First order ordinary differential equations are often exactly solvable by separation of variables, especially for autonomous equations. For example, the nonlinear equation
   −
一阶常微分方程,尤其是自治方程,通常可以用'''分离变量法  Separation of Variables'''来精确求解。例如,非线性方程
+
一阶常微分方程,尤其是自治(自主)方程,通常可以用'''分离变量法  Separation of Variables'''来精确求解。例如,非线性方程
    
<math>\frac{d u}{d x} = -u^2</math>
 
<math>\frac{d u}{d x} = -u^2</math>
第316行: 第316行:  
Another common (though less mathematic) tactic, often seen in fluid and heat mechanics, is to use scale analysis to simplify a general, natural equation in a certain specific boundary value problem. For example, the (very) nonlinear Navier-Stokes equations can be simplified into one linear partial differential equation in the case of transient, laminar, one dimensional flow in a circular pipe; the scale analysis provides conditions under which the flow is laminar and one dimensional and also yields the simplified equation.
 
Another common (though less mathematic) tactic, often seen in fluid and heat mechanics, is to use scale analysis to simplify a general, natural equation in a certain specific boundary value problem. For example, the (very) nonlinear Navier-Stokes equations can be simplified into one linear partial differential equation in the case of transient, laminar, one dimensional flow in a circular pipe; the scale analysis provides conditions under which the flow is laminar and one dimensional and also yields the simplified equation.
   −
另一个流体力学和热力学中常见的策略(虽然不是数学上的)是利用'''尺度分析 Scale Analysis'''来在某一特定边界条件下简化一般自然方程。例如,在描述圆管内一维层流的暂态时,非线性的纳维-斯托克斯方程可以简化为一个线性的偏微分方程; 尺度分析提供了层流和一维流动的条件,也产生了简化的方程。
+
另一个流体力学和热力学中常见的策略(虽然不是数学上的)是利用'''尺度分析 Scale Analysis'''来在某一特定边界条件下简化一般自然方程。例如,在描述圆管内一维层流的<font color='red'>暂态</font><font color='blue'> 瞬态 </font>时,非线性的纳维-斯托克斯方程可以简化为一个线性的偏微分方程; 尺度分析提供了层流和一维流动的条件,也产生了简化的方程。
     
106

个编辑