更改

第92行: 第92行:  
===量子测量理论===
 
===量子测量理论===
   −
  以上,我们把概率的运算全部复数化就得出了量子概率的计算结果,这种计算结果反映出一种观察者的测量作用对系统本身的干扰作用。冯.诺伊曼为量子力学建立数学基础(参见von Neumann 著[https://www.amazon.com/Mathematical-Foundations-Quantum-Mechanics-Neumann/dp/0691028931/163-7829924-4339748?ie=UTF8&*Version*=1&*entries*=0 《Mathematical foundations of quantum mechanics》])的过程中采用了略为不同的方法。首先,冯.诺伊曼没有定义一种关于复数的概率运算法则(事实上,上面讲述的复数概率运算思路属于物理学家费曼的路径积分法),而是扩充了系统的状态、事件以及事件运算法则等概念,也能得到和我们一模一样的结果。<br>
+
以上,我们把概率的运算全部复数化就得出了量子概率的计算结果,这种计算结果反映出一种观察者的测量作用对系统本身的干扰作用。冯.诺伊曼为量子力学建立数学基础(参见von Neumann 著[https://www.amazon.com/Mathematical-Foundations-Quantum-Mechanics-Neumann/dp/0691028931/163-7829924-4339748?ie=UTF8&*Version*=1&*entries*=0 《Mathematical foundations of quantum mechanics》])的过程中采用了略为不同的方法。首先,冯.诺伊曼没有定义一种关于复数的概率运算法则(事实上,上面讲述的复数概率运算思路属于物理学家费曼的路径积分法),而是扩充了系统的状态、事件以及事件运算法则等概念,也能得到和我们一模一样的结果。<br>
  但是,在冯诺伊曼的体系中,他明确提出来了一种测量运算的概念。所谓的一次测量就是指希尔伯特空间上的一个厄米(Hermite)矩阵,将这个矩阵作用到系统的状态上便能得到系统测量完后的结果,并且也能得出观察者所能得到的事件的概率。<br>
+
 
  与我们上面所说的可交互性不确定性解释不同,冯诺伊曼的解释更偏向电子在被测量之前根本就不是一个电子,而是一种充满着各种可能性的概率波,在被测量的一瞬间,这个概率波才从一个可能状态转变成了一种观察者已知的确定状态。换句话说,电子在被测量之前根本就不存在!一切关于电子的状态信息都是我们观测到的结果。<br>
+
 
  J.A. Wheeler曾经在他的著作[https://www.amazon.com/Quantum-Theory-Measurement-Princeton-Library/dp/0691083169?ie=UTF8&*Version*=1&*entries*=0 《Quantum Theory and Measurement》]中提到了一个非常有趣的21问游戏的例子来说明量子测量理论。<br>
+
但是,在冯诺伊曼的体系中,他明确提出来了一种测量运算的概念。所谓的一次测量就是指希尔伯特空间上的一个厄米(Hermite)矩阵,将这个矩阵作用到系统的状态上便能得到系统测量完后的结果,并且也能得出观察者所能得到的事件的概率。<br>
 +
 
 +
 
 +
与我们上面所说的可交互性不确定性解释不同,冯诺伊曼的解释更偏向电子在被测量之前根本就不是一个电子,而是一种充满着各种可能性的概率波,在被测量的一瞬间,这个概率波才从一个可能状态转变成了一种观察者已知的确定状态。换句话说,电子在被测量之前根本就不存在!一切关于电子的状态信息都是我们观测到的结果。<br>
 +
 
 +
 
 +
J.A. Wheeler曾经在他的著作[https://www.amazon.com/Quantum-Theory-Measurement-Princeton-Library/dp/0691083169?ie=UTF8&*Version*=1&*entries*=0 《Quantum Theory and Measurement》]中提到了一个非常有趣的21问游戏的例子来说明量子测量理论。<br>
 +
 
 
<hr>
 
<hr>
 
所谓的21问游戏是这样的:我随便想象一个人,然后你可以问我任意的问题,但是我的回答只能用“是”和“否”。比如我想好的人是希特勒。咱俩的对话如下:<br>
 
所谓的21问游戏是这样的:我随便想象一个人,然后你可以问我任意的问题,但是我的回答只能用“是”和“否”。比如我想好的人是希特勒。咱俩的对话如下:<br>
第109行: 第116行:  
就这样,如果你能够通过问21个问题而猜出最后的答案,那么你就赢得了游戏。<br>
 
就这样,如果你能够通过问21个问题而猜出最后的答案,那么你就赢得了游戏。<br>
 
<hr>
 
<hr>
  在经典的概率世界中,我想好的人是一个确定的人。但是在量子的世界中,我开始并没有想好一个真正的人,也就是说那个人一开始并不存在。然后,你开始问一系列问题,我用一串随机的是和否来回答你,但是要保证前后回答的逻辑连贯一致性。当一串问题问下来,虽然我的头脑中开始的那个人物并不存在,但是由于我的回答需要保持逻辑连贯性,因此我的看起来随机的回答就会被你的问题本身而塑造、确定。最终,我很有可能被你问出来一个希特勒!<br>
+
 
  在这个小游戏中,每一个问题就相当于一次量子测量,所谓的真实答案并不是一个客观存在的预设,而是不断被这一次次的测量塑造而成的。<br>
+
在经典的概率世界中,我想好的人是一个确定的人。但是在量子的世界中,我开始并没有想好一个真正的人,也就是说那个人一开始并不存在。然后,你开始问一系列问题,我用一串随机的是和否来回答你,但是要保证前后回答的逻辑连贯一致性。当一串问题问下来,虽然我的头脑中开始的那个人物并不存在,但是由于我的回答需要保持逻辑连贯性,因此我的看起来随机的回答就会被你的问题本身而塑造、确定。最终,我很有可能被你问出来一个希特勒!<br>
 +
 
 +
 
 +
在这个小游戏中,每一个问题就相当于一次量子测量,所谓的真实答案并不是一个客观存在的预设,而是不断被这一次次的测量塑造而成的。<br>
    
===走向宏观世界===
 
===走向宏观世界===
7,129

个编辑