更改

删除3字节 、 2020年7月20日 (一) 22:19
无编辑摘要
第183行: 第183行:  
Overview of [[signal transduction pathways]]
 
Overview of [[signal transduction pathways]]
   −
[信号转导/出路]概览
+
[信号转导通路]概览
    
According to the interpretation of Systems Biology as the ability to obtain, integrate and analyze complex data sets from multiple experimental sources using interdisciplinary tools, some typical technology platforms are [[phenomics]], organismal variation in [[phenotype]] as it changes during its life span; [[genomics]], organismal [[deoxyribonucleic acid]] (DNA) sequence, including intra-organismal cell specific variation. (i.e., [[telomere]] length variation); [[epigenomics]]/[[epigenetics]], organismal and corresponding cell specific transcriptomic regulating factors not empirically coded in the genomic sequence. (i.e., [[DNA methylation]], [[Histone acetylation and deacetylation]], etc.); [[transcriptomics]], organismal, tissue or whole cell [[gene expression]] measurements by [[DNA microarray]]s or [[serial analysis of gene expression]]; [[interferomics]], organismal, tissue, or cell-level transcript correcting factors (i.e., [[RNA interference]]), [[proteomics]], organismal, tissue, or cell level measurements of proteins and peptides via [[two-dimensional gel electrophoresis]], [[mass spectrometry]] or multi-dimensional protein identification techniques (advanced [[High-performance liquid chromatography|HPLC]] systems coupled with [[mass spectrometry]]). Sub disciplines include [[phosphoproteomics]], [[glycoproteomics]] and other methods to detect chemically modified proteins; [[metabolomics]], measurements of small molecules known as [[metabolites]] in the system at the organismal, cell, or tissue level;<ref name=":1">{{Cite journal|last=Cascante|first=Marta|last2=Marin|first2=Silvia|date=2008-09-30|title=Metabolomics and fluxomics approaches|journal=Essays in Biochemistry|language=en|volume=45|pages=67–82|doi=10.1042/bse0450067|pmid=18793124|issn=0071-1365}}</ref> [[glycomics]], organismal, tissue, or cell-level measurements of [[carbohydrate]]s;  [[lipidomics]], organismal, tissue, or cell level measurements of [[lipids]].
 
According to the interpretation of Systems Biology as the ability to obtain, integrate and analyze complex data sets from multiple experimental sources using interdisciplinary tools, some typical technology platforms are [[phenomics]], organismal variation in [[phenotype]] as it changes during its life span; [[genomics]], organismal [[deoxyribonucleic acid]] (DNA) sequence, including intra-organismal cell specific variation. (i.e., [[telomere]] length variation); [[epigenomics]]/[[epigenetics]], organismal and corresponding cell specific transcriptomic regulating factors not empirically coded in the genomic sequence. (i.e., [[DNA methylation]], [[Histone acetylation and deacetylation]], etc.); [[transcriptomics]], organismal, tissue or whole cell [[gene expression]] measurements by [[DNA microarray]]s or [[serial analysis of gene expression]]; [[interferomics]], organismal, tissue, or cell-level transcript correcting factors (i.e., [[RNA interference]]), [[proteomics]], organismal, tissue, or cell level measurements of proteins and peptides via [[two-dimensional gel electrophoresis]], [[mass spectrometry]] or multi-dimensional protein identification techniques (advanced [[High-performance liquid chromatography|HPLC]] systems coupled with [[mass spectrometry]]). Sub disciplines include [[phosphoproteomics]], [[glycoproteomics]] and other methods to detect chemically modified proteins; [[metabolomics]], measurements of small molecules known as [[metabolites]] in the system at the organismal, cell, or tissue level;<ref name=":1">{{Cite journal|last=Cascante|first=Marta|last2=Marin|first2=Silvia|date=2008-09-30|title=Metabolomics and fluxomics approaches|journal=Essays in Biochemistry|language=en|volume=45|pages=67–82|doi=10.1042/bse0450067|pmid=18793124|issn=0071-1365}}</ref> [[glycomics]], organismal, tissue, or cell-level measurements of [[carbohydrate]]s;  [[lipidomics]], organismal, tissue, or cell level measurements of [[lipids]].
第250行: 第250行:     
系统生物学方法经常涉及机械模型的发展,例如从动态系统的基本构件的定量特性重建动态系统。例如,一个蜂窝网络可以用数学方法来建模,使用的方法来自化学动力学和控制理论。由于蜂窝网络中参数、变量和约束的数量庞大,经常使用数值和计算技术(例如通量平衡分析)。
 
系统生物学方法经常涉及机械模型的发展,例如从动态系统的基本构件的定量特性重建动态系统。例如,一个蜂窝网络可以用数学方法来建模,使用的方法来自化学动力学和控制理论。由于蜂窝网络中参数、变量和约束的数量庞大,经常使用数值和计算技术(例如通量平衡分析)。
  −
      
== Bioinformatics and data analysis ==
 
== Bioinformatics and data analysis ==
320

个编辑