更改

添加15,045字节 、 2020年7月23日 (四) 08:41
第121行: 第121行:     
一些统计学家采用机器学习的方法,形成了一个他们称之为''统计学习''的交叉领域<ref name="islr">{{cite book |author1=Gareth James |author2=Daniela Witten |author3=Trevor Hastie |author4=Robert Tibshirani |title=An Introduction to Statistical Learning |publisher=Springer |year=2013 |url=http://www-bcf.usc.edu/~gareth/ISL/ |page=vii}}</ref>。
 
一些统计学家采用机器学习的方法,形成了一个他们称之为''统计学习''的交叉领域<ref name="islr">{{cite book |author1=Gareth James |author2=Daniela Witten |author3=Trevor Hastie |author4=Robert Tibshirani |title=An Introduction to Statistical Learning |publisher=Springer |year=2013 |url=http://www-bcf.usc.edu/~gareth/ISL/ |page=vii}}</ref>。
 +
 +
 +
=== 与人工智能 Artificial intelligence的关系Relation to artificial intelligence ===
 +
 +
As a scientific endeavor, machine learning grew out of the quest for artificial intelligence. In the early days of AI as an [[Discipline (academia)|academic discipline]], some researchers were interested in having machines learn from data. They attempted to approach the problem with various symbolic methods, as well as what were then termed "[[neural network]]s"; these were mostly [[perceptron]]s and [[ADALINE|other models]] that were later found to be reinventions of the [[generalized linear model]]s of statistics.<ref>{{cite citeseerx |last1=Sarle |first1=Warren |title=Neural Networks and statistical models |citeseerx=10.1.1.27.699 |year=1994}}</ref> [[Probability theory|Probabilistic]] reasoning was also employed, especially in automated [[medical diagnosis]].<ref name="aima">{{cite AIMA|edition=2}}</ref>{{rp|488}}
 +
 +
As a scientific endeavor, machine learning grew out of the quest for artificial intelligence. In the early days of AI as an academic discipline, some researchers were interested in having machines learn from data. They attempted to approach the problem with various symbolic methods, as well as what were then termed "neural networks"; these were mostly perceptrons and other models that were later found to be reinventions of the generalized linear models of statistics. Probabilistic reasoning was also employed, especially in automated medical diagnosis.
 +
 +
作为一项科研成果,机器学习源于对人工智能的探索。在人工智能这一学科研究的早期,一些研究人员对于让机器从数据中进行学习这一问题很感兴趣。他们试图用各种符号方法甚至是当时被称为'''”神经网络 Neural Networks”'''的方法来处理这个问题;但这些方法大部分是感知器或其他模型。后来这些模型随着统计学中广义线性模型的发展而重新出现在大众视野中,与此同时概率推理的方法也被广泛使用,特别是在自动医疗诊断问题上。
 +
 +
 +
 +
However, an increasing emphasis on the [[GOFAI|logical, knowledge-based approach]] caused a rift between AI and machine learning. Probabilistic systems were plagued by theoretical and practical problems of data acquisition and representation.<ref name="aima" />{{rp|488}} By 1980, [[expert system]]s had come to dominate AI, and statistics was out of favor.<ref name="changing">{{Cite journal | last1 = Langley | first1 = Pat| title = The changing science of machine learning | doi = 10.1007/s10994-011-5242-y | journal = [[Machine Learning (journal)|Machine Learning]]| volume = 82 | issue = 3 | pages = 275–279 | year = 2011 | pmid =  | pmc = | doi-access = free }}</ref> Work on symbolic/knowledge-based learning did continue within AI, leading to [[inductive logic programming]], but the more statistical line of research was now outside the field of AI proper, in [[pattern recognition]] and [[information retrieval]].<ref name="aima" />{{rp|708–710; 755}} Neural networks research had been abandoned by AI and [[computer science]] around the same time. This line, too, was continued outside the AI/CS field, as "[[connectionism]]", by researchers from other disciplines including [[John Hopfield|Hopfield]], [[David Rumelhart|Rumelhart]] and [[Geoff Hinton|Hinton]]. Their main success came in the mid-1980s with the reinvention of [[backpropagation]].<ref name="aima" />{{rp|25}}
 +
 +
However, an increasing emphasis on the logical, knowledge-based approach caused a rift between AI and machine learning. Probabilistic systems were plagued by theoretical and practical problems of data acquisition and representation. Work on symbolic/knowledge-based learning did continue within AI, leading to inductive logic programming, but the more statistical line of research was now outside the field of AI proper, in pattern recognition and information retrieval. Neural networks research had been abandoned by AI and computer science around the same time. This line, too, was continued outside the AI/CS field, as "connectionism", by researchers from other disciplines including Hopfield, Rumelhart and Hinton. Their main success came in the mid-1980s with the reinvention of backpropagation.
 +
 +
然而,日益强调的'''基于知识的逻辑方法 Knowledge-based Approach'''导致了人工智能和机器学习之间的裂痕。概率系统一直被数据获取和表示的理论和实际问题所困扰。在人工智能内部,符号/知识学习的工作确实在继续,导致了归纳逻辑编程,但更多的统计研究现在已经超出了人工智能本身的领域,即模式识别和信息检索。神经网络的研究几乎在同一时间被人工智能和计算机科学领域所抛弃,但这种思路却在人工智能/计算机之外的领域被延续了下来,被其他学科的研究人员称为“连接主义”。(编者注:连接主义又称为仿生学派或生理学派,其主要原理为神经网络及神经网络间的连接机制与学习算法。)包括霍普菲尔德 Hopfield、鲁梅尔哈特 Rumelhart和辛顿 Hinton。他们的主要成就集中在20世纪80年代中期,在这一阶段神经网络的方法随着反向传播算法的出现而重新被世人所重视。
 +
 +
 +
 +
Machine learning, reorganized as a separate field, started to flourish in the 1990s. The field changed its goal from achieving artificial intelligence to tackling solvable problems of a practical nature. It shifted focus away from the symbolic approaches it had inherited from AI, and toward methods and models borrowed from statistics and probability theory. As of 2019, many sources continue to assert that machine learning remains a sub field of AI. Yet some practitioners, for example Dr Daniel Hulme, who both teaches AI and  runs a company operating in the field, argues that machine learning and AI are separate.
 +
 +
机器学习,在重组为一个独立的领域之后,与20世纪90年代开始蓬勃发展。该领域的目标从实现人工智能转变为解决实际中的可解决问题。它将焦点从它从人工智能继承的符号方法转移到从统计学和概率论中借鉴的方法和模型。截止至2019年,许多资料都继续断言机器学习仍然是人工智能的一个子领域。然而,一些该领域的从业者(例如丹尼尔 · 休姆 Daniel Hulme博士,他既教授人工智能,又经营着一家在该领域运营的公司),则认为机器学习和人工智能是分开的。
 +
 +
 +
Machine learning, reorganized as a separate field, started to flourish in the 1990s. The field changed its goal from achieving artificial intelligence to tackling solvable problems of a practical nature. It shifted focus away from the [[symbolic artificial intelligence|symbolic approaches]] it had inherited from AI, and toward methods and models borrowed from statistics and [[probability theory]].<ref name="changing" /> As of 2019, many sources continue to assert that machine learning remains a sub field of AI. Yet some practitioners, for example Dr [[Daniel J. Hulme|Daniel Hulme]], who both teaches AI and  runs a company operating in the field, argues that machine learning and AI are separate. <ref name="elements">
 +
 +
 +
 +
 +
 
 +
Ref name"elements"
 +
 +
{{cite web
 +
 +
{{cite web
 +
 +
{ cite web
 +
 +
|url= https://course.elementsofai.com/
 +
 +
|url= https://course.elementsofai.com/
 +
 +
Https://course.elementsofai.com/
 +
 +
|title= The Elements of AI
 +
 +
|title= The Elements of AI
 +
 +
人工智能的元素
 +
 +
|publisher= [[University of Helsinki]]
 +
 +
|publisher= University of Helsinki
 +
 +
出版商赫尔辛基大学
 +
 +
|date = Dec 2019
 +
 +
|date = Dec 2019
 +
 +
2019年12月
 +
 +
|accessdate=7 April 2020}}
 +
 +
|accessdate=7 April 2020}}
 +
 +
2020年4月7日}
 +
 +
</ref><ref>
 +
 +
</ref><ref>
 +
 +
/ ref
 +
 +
{{cite web
 +
 +
{{cite web
 +
 +
{ cite web
 +
 +
|url= https://www.techworld.com/tech-innovation/satalia-ceo-no-one-is-doing-ai-optimisation-can-change-that-3775689/
 +
 +
|url= https://www.techworld.com/tech-innovation/satalia-ceo-no-one-is-doing-ai-optimisation-can-change-that-3775689/
 +
 +
Https://www.techworld.com/tech-innovation/satalia-ceo-no-one-is-doing-ai-optimisation-can-change-that-3775689/
 +
 +
|title= Satalia CEO Daniel Hulme has a plan to overcome the limitations of machine learning
 +
 +
|title= Satalia CEO Daniel Hulme has a plan to overcome the limitations of machine learning
 +
 +
萨塔利亚公司首席执行官丹尼尔 · 休姆计划克服机器学习的局限性
 +
 +
|publisher= [[Techworld]]
 +
 +
|publisher= Techworld
 +
 +
出版商 Techworld
 +
 +
|date = October 2019
 +
 +
|date = October 2019
 +
 +
2019年10月
 +
 +
|accessdate=7 April 2020}}
 +
 +
|accessdate=7 April 2020}}
 +
 +
2020年4月7日}
 +
 +
</ref><ref name = "Alpaydin2020"/>
 +
 +
=== 与数据挖掘 Data mining的关系Relation to data mining ===
 +
 +
Machine learning and [[data mining]] often employ the same methods and overlap significantly, but while machine learning focuses on prediction, based on ''known'' properties learned from the training data, [[data mining]] focuses on the [[discovery (observation)|discovery]] of (previously) ''unknown'' properties in the data (this is the analysis step of [[knowledge discovery]] in databases). Data mining uses many machine learning methods, but with different goals; on the other hand, machine learning also employs data mining methods as "unsupervised learning" or as a preprocessing step to improve learner accuracy. Much of the confusion between these two research communities (which do often have separate conferences and separate journals, [[ECML PKDD]] being a major exception) comes from the basic assumptions they work with: in machine learning, performance is usually evaluated with respect to the ability to ''reproduce known'' knowledge, while in knowledge discovery and data mining (KDD) the key task is the discovery of previously ''unknown'' knowledge. Evaluated with respect to known knowledge, an uninformed (unsupervised) method will easily be outperformed by other supervised methods, while in a typical KDD task, supervised methods cannot be used due to the unavailability of training data.
 +
 +
Machine learning and data mining often employ the same methods and overlap significantly, but while machine learning focuses on prediction, based on known properties learned from the training data, data mining focuses on the discovery of (previously) unknown properties in the data (this is the analysis step of knowledge discovery in databases). Data mining uses many machine learning methods, but with different goals; on the other hand, machine learning also employs data mining methods as "unsupervised learning" or as a preprocessing step to improve learner accuracy. Much of the confusion between these two research communities (which do often have separate conferences and separate journals, ECML PKDD being a major exception) comes from the basic assumptions they work with: in machine learning, performance is usually evaluated with respect to the ability to reproduce known knowledge, while in knowledge discovery and data mining (KDD) the key task is the discovery of previously unknown knowledge. Evaluated with respect to known knowledge, an uninformed (unsupervised) method will easily be outperformed by other supervised methods, while in a typical KDD task, supervised methods cannot be used due to the unavailability of training data.
 +
 +
机器学习和数据挖掘虽然在使用方法上有些相似并且有很大的重叠,但是机器学习的重点是预测,基于从训练数据中学到的已知属性,而数据挖掘的重点则是发现数据中(以前)未知的属性(这是'''数据库中知识发现 Knowledge Discovery in Database, KDD'''的基本分析步骤),也就是说数据挖掘虽然使用了许多机器学习方法,但二者的目标不同; 另一方面,机器学习也使用数据挖掘方法作为“无监督学习”或作为提高学习者准确性的预处理步骤。这两个研究领域之间的混淆(这两个领域通常有各自单独的会议和单独的期刊,ECML PKDD是一个例外)来自他们工作的基本假设: 在机器学习中,算法性能通常是根据再现已知知识的能力来评估,而在知识发现和数据挖掘中,其关键任务是发现以前未知的知识,因此在对已知知识进行评价时,其他监督方法很容易超过未知(无监督)方法,而在典型的知识发现任务中,由于缺乏训练数据,无法使用有监督的学习算法。
 +
 +
=== 与优化的关系 Relation to optimization ===
 +
 +
Machine learning also has intimate ties to [[Mathematical optimization|optimization]]: many learning problems are formulated as minimization of some [[loss function]] on a training set of examples. Loss functions express the discrepancy between the predictions of the model being trained and the actual problem instances (for example, in classification, one wants to assign a label to instances, and models are trained to correctly predict the pre-assigned labels of a set of examples). The difference between the two fields arises from the goal of generalization: while optimization algorithms can minimize the loss on a training set, machine learning is concerned with minimizing the loss on unseen samples.<ref>{{cite encyclopedia |last1=Le Roux |first1=Nicolas |first2=Yoshua |last2=Bengio |first3=Andrew |last3=Fitzgibbon |title=Improving First and Second-Order Methods by Modeling Uncertainty |encyclopedia=Optimization for Machine Learning |year=2012 |page=404 |editor1-last=Sra |editor1-first=Suvrit |editor2-first=Sebastian |editor2-last=Nowozin |editor3-first=Stephen J. |editor3-last=Wright |publisher=MIT Press|url=https://books.google.com/?id=JPQx7s2L1A8C&pg=PA403&dq="Improving+First+and+Second-Order+Methods+by+Modeling+Uncertainty|isbn=9780262016469 }}</ref>
 +
 +
Machine learning also has intimate ties to optimization: many learning problems are formulated as minimization of some loss function on a training set of examples. Loss functions express the discrepancy between the predictions of the model being trained and the actual problem instances (for example, in classification, one wants to assign a label to instances, and models are trained to correctly predict the pre-assigned labels of a set of examples). The difference between the two fields arises from the goal of generalization: while optimization algorithms can minimize the loss on a training set, machine learning is concerned with minimizing the loss on unseen samples.
 +
 +
机器学习与优化也有着密切的联系: 许多学习问题被表述为最小化训练样本集上的某些'''损失函数 Loss Function'''。损失函数表示正在训练的模型预测结果与实际数据之间的差异(例如,在分类问题中,人们的目标是给一个未知的实例分配其对应标签,而模型经过训练学习到的是如何正确地为一组实例标记事先已知的标签)。这两个领域之间的差异源于泛化的目标: 优化算法可以最小化训练集上的损失,而机器学习关注于最小化未知样本上的损失。
    
==理论==
 
==理论==
463

个编辑