更改

删除1,047字节 、 2020年7月23日 (四) 09:21
第704行: 第704行:       −
====深度学习====
+
=====深度学习=====
 
:''主文章:[https://en.wikipedia.org/wiki/Deep_learning 深度学习]''
 
:''主文章:[https://en.wikipedia.org/wiki/Deep_learning 深度学习]''
   −
 
+
近几年来,硬件价格的下降和个人用[https://en.wikipedia.org/wiki/Graphics_processing_unit GPU]的发展促进了'''深度学习 Deep Learning'''概念的发展,该概念由人工神经网络中的多个隐层组成。这种方法试图模拟人脑将光和声音处理成视觉和听觉的方式。深入学习的一些成功应用是[https://en.wikipedia.org/wiki/Computer_vision 计算机视觉]和[https://en.wikipedia.org/wiki/Speech_recognition 语音识别]
[[Deep learning]] consists of multiple hidden layers in an artificial neural network. This approach tries to model the way the human brain processes light and sound into vision and hearing. Some successful applications of deep learning are [[computer vision]] and [[speech recognition]].<ref>Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y. Ng. "[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.802&rep=rep1&type=pdf Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations]" Proceedings of the 26th Annual International Conference on Machine Learning, 2009.</ref>
  −
 
  −
Deep learning consists of multiple hidden layers in an artificial neural network. This approach tries to model the way the human brain processes light and sound into vision and hearing. Some successful applications of deep learning are computer vision and speech recognition.
  −
 
  −
深度学习由人工神经网络中的多个隐层组成,通过这种方法可以尽量模拟人类大脑将光和声音处理成视觉和听觉的方式。
  −
 
  −
近几年来,硬件价格的下降和个人用[https://en.wikipedia.org/wiki/Graphics_processing_unit GPU]的发展促进了深度学习概念的发展,该概念由人工神经网络中的多个隐层组成。这种方法试图模拟人脑将光和声音处理成视觉和听觉的方式。深入学习的一些成功应用是[https://en.wikipedia.org/wiki/Computer_vision 计算机视觉]和[https://en.wikipedia.org/wiki/Speech_recognition 语音识别]
   
<ref>Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y. Ng. "[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.802&rep=rep1&type=pdf Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations]" Proceedings of the 26th Annual International Conference on Machine Learning, 2009.</ref>。
 
<ref>Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y. Ng. "[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.802&rep=rep1&type=pdf Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations]" Proceedings of the 26th Annual International Conference on Machine Learning, 2009.</ref>。
  
463

个编辑