更改

删除133字节 、 2020年7月26日 (日) 19:51
无编辑摘要
第6行: 第6行:  
换句话说,在非线性方程系统中,待解的方程不能被写成未知变量或函数的线性组合。无论方程中是否有已知的线性函数,系统都可以被定义为非线性。特别是当一个微分方程的未知函数及其导数是线性的,即使其他变量是非线性的,也称该方程是线性的。
 
换句话说,在非线性方程系统中,待解的方程不能被写成未知变量或函数的线性组合。无论方程中是否有已知的线性函数,系统都可以被定义为非线性。特别是当一个微分方程的未知函数及其导数是线性的,即使其他变量是非线性的,也称该方程是线性的。
   −
由于非线性动力学方程难以求解,通常用线性方程来近似非线性系统('''[[线性化]] Linearization''')。这种方法对于一定范围的输入和某些精度要求下的效果不错,但一些有趣的现象如'''[[孤子]] Soliton'''、'''[[混沌]] Chaos'''和'''[[奇异性]] Singularity'''在线性化后被隐藏<ref>[http://ocw.mit.edu/OcwWeb/Earth--Atmospheric--and-Planetary-Sciences/12-006JFall-2006/CourseHome/index.htm Nonlinear Dynamics I: Chaos] at [http://ocw.mit.edu/OcwWeb/index.htm MIT's OpenCourseWare]</ref>。因此,非线性系统的动态行为在某些方面可能看起来违反直觉、不可预测、甚至混沌。尽管这种混沌行为可能感觉很像随机行为,但它实际上并不是随机的。例如,天气的某些方面被认为是混沌的,其系统某部分的微小扰动就会产生复杂的整体影响。这种非线性是目前技术无法进行精确长期预测的原因之一。
+
由于非线性动力学方程难以求解,通常用线性方程来近似非线性系统([[线性化]] Linearization)。这种方法对于一定范围的输入和某些精度要求下的效果不错,但一些有趣的现象如[[孤子]] Soliton、[[混沌]] Chaos和[[奇异性]] Singularity在线性化后被隐藏<ref>[http://ocw.mit.edu/OcwWeb/Earth--Atmospheric--and-Planetary-Sciences/12-006JFall-2006/CourseHome/index.htm Nonlinear Dynamics I: Chaos] at [http://ocw.mit.edu/OcwWeb/index.htm MIT's OpenCourseWare]</ref>。因此,非线性系统的动态行为在某些方面可能看起来违反直觉、不可预测、甚至混沌。尽管这种混沌行为可能感觉很像随机行为,但它实际上并不是随机的。例如,天气的某些方面被认为是混沌的,其系统某部分的微小扰动就会产生复杂的整体影响。这种非线性是目前技术无法进行精确长期预测的原因之一。
    
有些作者用非线性科学这一术语来研究非线性系统。这一术语引起了其他人的争议:
 
有些作者用非线性科学这一术语来研究非线性系统。这一术语引起了其他人的争议:
第35行: 第35行:     
===相关概念辨析===
 
===相关概念辨析===
'''线性Linear'''、'''非线性Nonlinear'''、'''亚线性 Sublinear'''、'''超线性 Superlinear''':描述量与量之间的一种变化关系,例如<math>y=a+b*x^n</math>,其中<math>n>1</math>。当<math>n=1</math>时,表示为线性关系;<math>n\neq 1</math>时,表示为非线性关系;当<math>0<n<1</math>时,表示为亚线性关系;当<math>n>1</math>时,表示为超线性关系。
+
线性Linear、非线性 Nonlinear、亚线性 Sublinear、超线性 Superlinear:描述量与量之间的一种变化关系,例如<math>y=a+b*x^n</math>,其中<math>n>1</math>。当<math>n=1</math>时,表示为线性关系;<math>n\neq 1</math>时,表示为非线性关系;当<math>0<n<1</math>时,表示为亚线性关系;当<math>n>1</math>时,表示为超线性关系。
    
亚线性与超线性属于非线性变化关系范畴。当两个变量之间存在亚线性关系时,其典型特性是因变量的变化速率会随着自变量的增大而减小,即其一阶导数会随着自变量的增大而减小;两个变量之间存在超线性关系时,其典型特性是因变量的变化速率会随着自变量的增大而增大,即其一阶导数会随着自变量的增大而增大。
 
亚线性与超线性属于非线性变化关系范畴。当两个变量之间存在亚线性关系时,其典型特性是因变量的变化速率会随着自变量的增大而减小,即其一阶导数会随着自变量的增大而减小;两个变量之间存在超线性关系时,其典型特性是因变量的变化速率会随着自变量的增大而增大,即其一阶导数会随着自变量的增大而增大。
第47行: 第47行:  
:<math>x^2 + x - 1 = 0\,.</math>
 
:<math>x^2 + x - 1 = 0\,.</math>
   −
对于一个单一的多项式方程,'''求根算法 Root-finding Algorithms'''可用于其求解(即找到满足该方程的变量的值集)。而代数方程组则相对复杂,其研究是现代数学的较难分支——'''代数几何 Algebraic Geometry'''领域的动力之一。甚至很难判断一个给定的代数系统是否有复数解(见'''希尔伯特零点定律 Hilbert's Nullstellensatz''')。不过,对于具有有限个复数解的系统的多项式方程组,我们现在已经有了充分的理解,并且找到了有效的求解方法<ref>{{cite journal |last1= Lazard |first1= D. |title= Thirty years of Polynomial System Solving, and now? |doi= 10.1016/j.jsc.2008.03.004 |journal= Journal of Symbolic Computation |volume= 44 |issue= 3 |pages= 222–231 |year= 2009 |pmid= |pmc=}}</ref>。
+
对于一个单一的多项式方程,求根算法可用于其求解(即找到满足该方程的变量的值集)。而代数方程组则相对复杂,其研究是现代数学的较难分支——代数几何领域的动力之一。甚至很难判断一个给定的代数系统是否有复数解(见[[希尔伯特零点定律]] Hilbert's Nullstellensatz''')。不过,对于具有有限个复数解的系统的多项式方程组,我们现在已经有了充分的理解,并且找到了有效的求解方法<ref>{{cite journal |last1= Lazard |first1= D. |title= Thirty years of Polynomial System Solving, and now? |doi= 10.1016/j.jsc.2008.03.004 |journal= Journal of Symbolic Computation |volume= 44 |issue= 3 |pages= 222–231 |year= 2009 |pmid= |pmc=}}</ref>。
    
==非线性递推关系==
 
==非线性递推关系==
第61行: 第61行:  
===常微分方程===
 
===常微分方程===
   −
一阶[[常微分方程]],尤其是自治(自主)方程,通常可以用'''分离变量法  Separation of Variables'''来精确求解。例如,非线性方程
+
一阶[[常微分方程]],尤其是自治(自主)方程,通常可以用分离变量法来精确求解。例如,非线性方程
    
:<math>\frac{d u}{d x} = -u^2</math>
 
:<math>\frac{d u}{d x} = -u^2</math>
421

个编辑