更改

添加37字节 、 2020年8月7日 (五) 09:35
第309行: 第309行:     
===Milne's definition in terms of radiative equilibrium===
 
===Milne's definition in terms of radiative equilibrium===
 +
米尔恩依据辐射平衡的定义
    
[[Edward Arthur Milne|Edward A. Milne]], thinking about stars, gave a definition of 'local thermodynamic equilibrium' in terms of the [[thermal radiation]] of the [[matter]] in each small local 'cell'.<ref name="Milne 1928">{{cite journal | last1= Milne |first1= E.A. |year=1928 | title= The effect of collisions on monochromatic radiative equilibrium |journal=[[Monthly Notices of the Royal Astronomical Society]] | volume= 88|issue= 6 |pages=493–502|bibcode=1928MNRAS..88..493M | doi = 10.1093/mnras/88.6.493 |doi-access= free }}</ref> He defined 'local thermodynamic equilibrium' in a 'cell' by requiring that it macroscopically absorb and spontaneously emit radiation as if it were in radiative equilibrium in a cavity at the [[temperature]] of the matter of the 'cell'. Then it strictly obeys Kirchhoff's law of equality of radiative emissivity and absorptivity, with a black body source function. The key to local thermodynamic equilibrium here is that the rate of collisions of ponderable matter particles such as molecules should far exceed the rates of creation and annihilation of photons.
 
[[Edward Arthur Milne|Edward A. Milne]], thinking about stars, gave a definition of 'local thermodynamic equilibrium' in terms of the [[thermal radiation]] of the [[matter]] in each small local 'cell'.<ref name="Milne 1928">{{cite journal | last1= Milne |first1= E.A. |year=1928 | title= The effect of collisions on monochromatic radiative equilibrium |journal=[[Monthly Notices of the Royal Astronomical Society]] | volume= 88|issue= 6 |pages=493–502|bibcode=1928MNRAS..88..493M | doi = 10.1093/mnras/88.6.493 |doi-access= free }}</ref> He defined 'local thermodynamic equilibrium' in a 'cell' by requiring that it macroscopically absorb and spontaneously emit radiation as if it were in radiative equilibrium in a cavity at the [[temperature]] of the matter of the 'cell'. Then it strictly obeys Kirchhoff's law of equality of radiative emissivity and absorptivity, with a black body source function. The key to local thermodynamic equilibrium here is that the rate of collisions of ponderable matter particles such as molecules should far exceed the rates of creation and annihilation of photons.
320

个编辑