更改

添加983字节 、 2020年8月7日 (五) 09:40
第74行: 第74行:  
The [[first law of thermodynamics]] provides the definition of the [[internal energy]] of a [[thermodynamic system]], and expresses the law of [[conservation of energy]].<ref>[[Max Planck|Planck, M.]] (1897/1903), pp. 40–41.</ref><ref>Munster A. (1970), pp. 8–9, 50–51.</ref> The second law is concerned with the direction of natural processes.<ref>{{harvnb|Mandl|1988}}</ref> It asserts that a natural process runs only in one sense, and is not reversible. For example, when a path for conduction and radiation is made available, heat always flows spontaneously from a hotter to a colder body. Such [[Phenomenon|phenomena]] are accounted for in terms of [[entropy]].<ref>[[Max Planck|Planck, M.]] (1897/1903), pp. 79–107.</ref><ref>Bailyn, M. (1994), Section 71, pp. 113–154.</ref> If an isolated system is held initially in internal thermodynamic equilibrium by internal partitioning impermeable walls, and then some operation makes the walls more permeable, then the system spontaneously evolves to reach a final new internal thermodynamic equilibrium, and its total entropy, {{math|''S''}}, increases.
 
The [[first law of thermodynamics]] provides the definition of the [[internal energy]] of a [[thermodynamic system]], and expresses the law of [[conservation of energy]].<ref>[[Max Planck|Planck, M.]] (1897/1903), pp. 40–41.</ref><ref>Munster A. (1970), pp. 8–9, 50–51.</ref> The second law is concerned with the direction of natural processes.<ref>{{harvnb|Mandl|1988}}</ref> It asserts that a natural process runs only in one sense, and is not reversible. For example, when a path for conduction and radiation is made available, heat always flows spontaneously from a hotter to a colder body. Such [[Phenomenon|phenomena]] are accounted for in terms of [[entropy]].<ref>[[Max Planck|Planck, M.]] (1897/1903), pp. 79–107.</ref><ref>Bailyn, M. (1994), Section 71, pp. 113–154.</ref> If an isolated system is held initially in internal thermodynamic equilibrium by internal partitioning impermeable walls, and then some operation makes the walls more permeable, then the system spontaneously evolves to reach a final new internal thermodynamic equilibrium, and its total entropy, {{math|''S''}}, increases.
   −
The first law of thermodynamics provides the definition of the internal energy of a thermodynamic system, and expresses the law of conservation of energy. The second law is concerned with the direction of natural processes. It asserts that a natural process runs only in one sense, and is not reversible. For example, when a path for conduction and radiation is made available, heat always flows spontaneously from a hotter to a colder body. Such phenomena are accounted for in terms of entropy. If an isolated system is held initially in internal thermodynamic equilibrium by internal partitioning impermeable walls, and then some operation makes the walls more permeable, then the system spontaneously evolves to reach a final new internal thermodynamic equilibrium, and its total entropy, , increases.
+
The first law of thermodynamics provides the definition of the internal energy of a thermodynamic system, and expresses the law of conservation of energy. The second law is concerned with the direction of natural processes. It asserts that a natural process runs only in one sense, and is not reversible. For example, when a path for conduction and radiation is made available, heat always flows spontaneously from a hotter to a colder body. Such phenomena are accounted for in terms of entropy. If an isolated system is held initially in internal thermodynamic equilibrium by internal partitioning impermeable walls, and then some operation makes the walls more permeable, then the system spontaneously evolves to reach a final new internal thermodynamic equilibrium, and its total entropy, S, increases.
   −
'''热力学第一定律 First Law Of Thermodynamics''' 对热力学系统所涉及到的内能进行了定义,并体现了能量守恒定律。热力学第二定律与自然过程的方向有关。它设定自然过程只在一种意义上进行,且是不可逆的。例如,当有了传导和辐射的(传播)路径时,热量总是自发地从一个较热的物体流向一个较冷的物体。这种现象可以用熵来解释。若一个孤立系统最初在内部不可渗透的薄膜维持内部的热力学平衡,通过一些操作使得薄膜具有渗透性,则该系统可自发地演变,最终达到一个新的内部热力学平衡,其总熵增加。
+
'''热力学第一定律 First Law Of Thermodynamics''' <font color = 'red'><s>对</s></font> <font color = 'blue'>定义了</font>热力学系统所涉及到的'''内能 Internal Energy'''<font color = 'red'><s>进行了定义</s></font> ,并体现了能量守恒定律。热力学第二定律与'''自然过程Natural Processes'''的方向有关。它<font color = 'red'><s>设定</s></font> <font color = 'blue'>断言</font>自然过程只在一种意义上进行,且<font color = 'red'><s>是</s></font> 不可逆<font color = 'red'><s>的</s></font> 。例如,当有了传导和辐射的(传播)路径时,热量总是自发地从一个较热的物体流向一个较冷的物体。<font color = 'red'>这种现象可以用'''熵Entropy'''来解释。若一个孤立系统最初在内部不可渗透的薄膜维持内部的热力学平衡,通过一些操作使得薄膜具有渗透性,则该系统可自发地演变,最终达到一个新的内部热力学平衡,其总熵增加。</font>
 +
<font color = 'blue'>若一个'''孤立系统Isolated System'''最初在具有隔热内壁的系统内维持热力学平衡,通过一些操作使内壁透热,则该系统可自发地演变,最终达到一个新的内部热力学平衡,且其总熵{{math|''S''}}增加。</font>
 
   --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]]) more permeable不知道是否需要译为更具有  impermeable wall是不可渗透 如果要使用比较级  是否应该再有一个 permeable
 
   --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]]) more permeable不知道是否需要译为更具有  impermeable wall是不可渗透 如果要使用比较级  是否应该再有一个 permeable
 +
  --[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) internal partitioning impermeable walls翻译为隔热的内壁,从而permeable指的是透热的。我觉得这里的渗透性应该是说系统可以和外界进行能量/热的交换。?不知道是否正确。
      第83行: 第85行:     
In a fictive reversible process, an infinitesimal increment in the entropy ({{math|d''S''}}) of a system is defined to result from an infinitesimal transfer of heat ({{math|δ''Q''}}) to a [[closed system]] (which allows the entry or exit of energy – but not transfer of matter) divided by the common temperature ({{math|''T''}}) of the system in equilibrium and the surroundings which supply the heat:<ref>Bailyn, M. (1994), p. 120.</ref>
 
In a fictive reversible process, an infinitesimal increment in the entropy ({{math|d''S''}}) of a system is defined to result from an infinitesimal transfer of heat ({{math|δ''Q''}}) to a [[closed system]] (which allows the entry or exit of energy – but not transfer of matter) divided by the common temperature ({{math|''T''}}) of the system in equilibrium and the surroundings which supply the heat:<ref>Bailyn, M. (1994), p. 120.</ref>
 
+
==here==
 
In a fictive reversible process, an infinitesimal increment in the entropy () of a system is defined to result from an infinitesimal transfer of heat () to a closed system (which allows the entry or exit of energy – but not transfer of matter) divided by the common temperature () of the system in equilibrium and the surroundings which supply the heat:
 
In a fictive reversible process, an infinitesimal increment in the entropy () of a system is defined to result from an infinitesimal transfer of heat () to a closed system (which allows the entry or exit of energy – but not transfer of matter) divided by the common temperature () of the system in equilibrium and the surroundings which supply the heat:
   −
在设置的虚拟可逆过程中,系统熵的无穷小增量<math>dS</math>被定义为由无穷小的热量<math>δQ</math>传递到一个封闭系统(允许能量进入或出去,但不允许物质传递)除以平衡系统和提供热量的环境的共同温度 <math>T</math> :
+
在<font color = 'red'><s>设置的虚拟</s></font> <font color = 'blue'>假想的</font>可逆过程中,系统的熵的无穷小增量<math>dS</math>被定义为由无穷小的热量<math>δQ</math>传递到一个封闭系统(允许能量进入或出去,但不允许物质传递)除以平衡系统和提供热量的环境的共同温度 <math>T</math> :
      第161行: 第163行:     
   --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])补充热力学第零定律
 
   --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])补充热力学第零定律
      
==Various statements of the law热力学第二定律的不同表述==
 
==Various statements of the law热力学第二定律的不同表述==
259

个编辑