更改

添加37字节 、 2020年8月9日 (日) 17:17
第587行: 第587行:  
Several generalizations of mutual information to more than two random variables have been proposed, such as total correlation (or multi-information) and interaction information. The expression and study of multivariate higher-degree mutual-information was achieved in two seemingly independent works: McGill (1954)  who called these functions “interaction information”, and Hu Kuo Ting (1962)  who also first proved the possible negativity of mutual-information for degrees higher than 2 and justified algebraically the intuitive correspondence to Venn diagrams   
 
Several generalizations of mutual information to more than two random variables have been proposed, such as total correlation (or multi-information) and interaction information. The expression and study of multivariate higher-degree mutual-information was achieved in two seemingly independent works: McGill (1954)  who called these functions “interaction information”, and Hu Kuo Ting (1962)  who also first proved the possible negativity of mutual-information for degrees higher than 2 and justified algebraically the intuitive correspondence to Venn diagrams   
   −
提出了几种将互信息推广到两个以上随机变量的方法,如总相关(或多信息)和交互信息。多元高次互信息的表达和研究是在两部看似独立的著作中完成的: 麦吉尔(1954)将这些函数称为“交互信息” ,胡阔庭(1962)首次证明了高于2次互信息的可能负性,并用代数方法证明了与维恩图的直观对应关系
+
提出了将互信息推广到两个以上随机变量的方法,如全相关(或多信息)和交互信息。多元高阶互信息的表达和研究是在两部看似独立的著作中实现的:McGill(1954)称这些函数为“交互信息”,胡国亭(1962)也首次证明了大于2度的互信息可能是负的,并用代数证明了维恩图的直观对应关系
 +
 
 +
 
    
:<math>
 
:<math>
第599行: 第601行:     
and for <math>n > 1,</math>
 
and for <math>n > 1,</math>
 +
 +
and for 𝑛>1,
 +
 +
而对于𝑛>1,有:
 +
    
:<math>
 
:<math>
第616行: 第623行:  
where (as above) we define
 
where (as above) we define
   −
(如上所述)我们在哪里定义
+
在(如上所述)我们定义:
 +
 
    
:<math>
 
:<math>
第629行: 第637行:  
(This definition of multivariate mutual information is identical to that of interaction information except for a change in sign when the number of random variables is odd.)
 
(This definition of multivariate mutual information is identical to that of interaction information except for a change in sign when the number of random variables is odd.)
   −
(这种多变量互信息的定义与交互信息的定义相同,只是在随机变量数目为奇数时符号发生了变化。)
+
(这个多元互信息的定义与互信息的定义相同,随机变量的数目为奇数时符号的变化除外。)
     
463

个编辑