第934行: |
第934行: |
| | | |
| | | |
− | ==here0811==
| |
| | | |
| | | |
第941行: |
第940行: |
| Whatever changes to dS and dS<sub>R</sub> occur in the entropies of the sub-system and the surroundings individually, according to the Second Law the entropy S<sub>tot</sub> of the isolated total system must not decrease: | | Whatever changes to dS and dS<sub>R</sub> occur in the entropies of the sub-system and the surroundings individually, according to the Second Law the entropy S<sub>tot</sub> of the isolated total system must not decrease: |
| | | |
− | 无论子系统和周围环境的dS 和 dSR发生什么变化,根据第二定律,孤立总体系统的熵 Stot不能减小。
| + | 无论子系统和周围环境<font color = 'red'><s>的 ''dS''和''dS<sub>R</sub>'' 发生</s></font><font color = 'blue'>单独地发生什么熵的变化 ''dS''和dS<sub>R</sub></font>,根据第二定律,孤立总体系统的熵S<sub>tot</sub>不能减小。 |
| | | |
| | | |
第951行: |
第950行: |
| <math> dS_{\mathrm{tot}}= dS + dS_R \ge 0 </math> | | <math> dS_{\mathrm{tot}}= dS + dS_R \ge 0 </math> |
| | | |
− | 数学 dS + dS r ge 0 / math
| + | <math> dS_{\mathrm{tot}}= dS + dS_R \ge 0 </math> |
| | | |
| | | |
第961行: |
第960行: |
| According to the first law of thermodynamics, the change dU in the internal energy of the sub-system is the sum of the heat δq added to the sub-system, less any work δw done by the sub-system, plus any net chemical energy entering the sub-system d ∑μ<sub>iR</sub>N<sub>i</sub>, so that: | | According to the first law of thermodynamics, the change dU in the internal energy of the sub-system is the sum of the heat δq added to the sub-system, less any work δw done by the sub-system, plus any net chemical energy entering the sub-system d ∑μ<sub>iR</sub>N<sub>i</sub>, so that: |
| | | |
− | 根据能量守恒定律,子系统内部能量的变化 dU 是子系统内部能量 q 的总和,减去子系统所做的任何功w,再加上进入子系统的任何净化学能dxxxx,因此
| + | 根据<font color = 'red'><s>能量守恒定律</s></font><font color = 'blue'>热力学第一定律</font>,子系统<font color = 'red'><s>内部能量</s></font><font color = 'blue'>内能</font>的变化 dU 是<font color = 'red'><s>子系统内部能量 q 的总和</s></font>加在子系统上的热δq的和<font color = 'blue'></font>,减去子系统所做的任何功w,再加上进入子系统的任何净化学能 d ∑μ<sub>iR</sub>N<sub>i</sub>,因此 |
| | | |
| | | |
第971行: |
第970行: |
| <math> dU = \delta q - \delta w + d(\sum \mu_{iR}N_i) \,</math> | | <math> dU = \delta q - \delta w + d(\sum \mu_{iR}N_i) \,</math> |
| | | |
− | 数学 dU delta q- delta w + d ( sum mu iR } n i) ,/ math
| + | <math> dU = \delta q - \delta w + d(\sum \mu_{iR}N_i) \,</math> |
| | | |
| | | |
第981行: |
第980行: |
| where μ<sub>iR</sub> are the chemical potentials of chemical species in the external surroundings. | | where μ<sub>iR</sub> are the chemical potentials of chemical species in the external surroundings. |
| | | |
− | 其中 iR 是外部环境中化学物类的化学势。
| + | 其中μ<sub>iR</sub>是外部环境中<font color = 'red'><s>化学物类</s></font><font color = '#FFD700'>'''化学形态 chemical species'''</font>的化学势。 |
| | | |
| | | |
第990行: |
第989行: |
| Now the heat leaving the reservoir and entering the sub-system is | | Now the heat leaving the reservoir and entering the sub-system is |
| | | |
− | 现在热量离开储存器进入子系统是
| + | 现在热<font color = 'red'><s>量</s></font>离开<font color = 'red'><s>储存器</s></font><font color = 'blue'>热源</font>进入子系统是 |
| | | |
| | | |
第1,010行: |
第1,009行: |
| where we have first used the definition of entropy in classical thermodynamics (alternatively, in statistical thermodynamics, the relation between entropy change, temperature and absorbed heat can be derived); and then the Second Law inequality from above. | | where we have first used the definition of entropy in classical thermodynamics (alternatively, in statistical thermodynamics, the relation between entropy change, temperature and absorbed heat can be derived); and then the Second Law inequality from above. |
| | | |
− | 在这个过程中,首先使用了经典热力学中熵的定义(在统计热力学中,熵变、温度和吸收热量之间的关系可以将其推导出来) ,然后从上面的公式可以推导出第二定律的不等式。 | + | 在这个过程中,首先使用了经典热力学中熵的定义(在统计热力学中,熵变、温度和吸收热量之间的关系<font color = 'green'>可以将其推导出来</font>) ,然后从上面的公式可以推导出第二定律的不等式。 |
| | | |
| | | |
第1,036行: |
第1,035行: |
| | | |
| It is useful to separate the work ''δw'' done by the subsystem into the ''useful'' work ''δw<sub>u</sub>'' that can be done ''by'' the sub-system, over and beyond the work ''p<sub>R</sub> dV'' done merely by the sub-system expanding against the surrounding external pressure, giving the following relation for the useful work (exergy) that can be done: | | It is useful to separate the work ''δw'' done by the subsystem into the ''useful'' work ''δw<sub>u</sub>'' that can be done ''by'' the sub-system, over and beyond the work ''p<sub>R</sub> dV'' done merely by the sub-system expanding against the surrounding external pressure, giving the following relation for the useful work (exergy) that can be done: |
− | | + | ==here0811== |
| It is useful to separate the work δw done by the subsystem into the useful work δw<sub>u</sub> that can be done by the sub-system, over and beyond the work p<sub>R</sub> dV done merely by the sub-system expanding against the surrounding external pressure, giving the following relation for the useful work (exergy) that can be done: | | It is useful to separate the work δw done by the subsystem into the useful work δw<sub>u</sub> that can be done by the sub-system, over and beyond the work p<sub>R</sub> dV done merely by the sub-system expanding against the surrounding external pressure, giving the following relation for the useful work (exergy) that can be done: |
| | | |