更改

添加5,887字节 、 2020年8月12日 (三) 20:41
第100行: 第100行:  
该模型的主要局限性是会产生不符实际的度分布。相较而言,现实中的网络通常是非齐次的[[无标度网络]],有中心节点的存在和无标度的度分布。考虑到此,这样的网络可以用[[偏好依附模型 preferential attachment model]]来更好的描述,比如[[BA网络模型]]。(另一方面,BA模型没有产生真实网络中出现的高集聚特性,而这个弱点是WS小世界模型所不具备的。因此,WS小世界模型和BA模型均不应被看成是完全符合实际的。)WS小世界模型也暗含了固定的节点数,所以也不能用来描述网络的生长。
 
该模型的主要局限性是会产生不符实际的度分布。相较而言,现实中的网络通常是非齐次的[[无标度网络]],有中心节点的存在和无标度的度分布。考虑到此,这样的网络可以用[[偏好依附模型 preferential attachment model]]来更好的描述,比如[[BA网络模型]]。(另一方面,BA模型没有产生真实网络中出现的高集聚特性,而这个弱点是WS小世界模型所不具备的。因此,WS小世界模型和BA模型均不应被看成是完全符合实际的。)WS小世界模型也暗含了固定的节点数,所以也不能用来描述网络的生长。
    +
==应用==
 +
===社会学应用===
 +
 +
小世界网络对[https://en.wikipedia.org/wiki/Social_movement 社会运动群体]的优势在于,它们由于采用了高度互联的节点的过滤设备,因而对变化具有一定的抗性,以及它有效地实现了,在中继信息的同时,保持了连接网络所需的最少链路数”。<ref name="a22">#Shirky, Clay. 2008. [https://en.wikipedia.org/wiki/Here_Comes_Everybody Here Comes Everybody]</ref>
 +
 +
[https://en.wikipedia.org/wiki/William_Finnegan William Finnegan]在社会学论证提出,小世界网络可直接适用于[https://en.wikipedia.org/wiki/Affinity_group 亲和团体](Affinity Group)理论。亲和团体指的是旨在实现某个较大目标或功能的小型半独立社会运动团体。虽然在节点级别上并没有严格的隶属架构,但作为连接节点的少数高连接性成员,能够通过网络连接组织内的不同群体。这种小世界网络已被证明是一种极其有效的抗议警察行动的组织策略。<ref name="a23">#Finnegan, William "Affinity Groups and the Movement Against Corporate Globalization"</ref>[https://en.wikipedia.org/wiki/Clay_Shirky Clay Shirky]认为,通过小世界网络创造的社交网络越大,高连接性结点在网络内的价值就越高。<ref name="a22"></ref>同理可适用于亲和团体模型,即每个团体内只有少数人与外部团体相联系,从而极大提高了灵活性和适应性。这方面的一个实践案例是William Finnegan在概括[https://en.wikipedia.org/wiki/1999_Seattle_Protests 1999年西雅图世贸组织抗议活动]时,所提到的亲和团体中的小世界网络。
 +
 +
===地球科学应用===
 +
 +
许多研究地质学和地球物理学的网络,已被证明具有小世界网络的特征。在裂缝系统和多空物质中被定义的网络,已经显示出了这些特征。<ref name="a24">#X. S. Yang, Small-world networks in geophysics, Geophys. Res. Lett., 28(13), 2549–2552 (2001)
 +
</ref>南加州地区的地震网络或许就是一个小世界网络。<ref name="a25">#A. Jimenez, K. F. Tiampo, and A. M. Posadas, Small-world in a seismic network: the California case, Nonlin. Processes Geophys., 15, 389–395 (2008)</ref>上述提及的例子所发生的空间尺度大相径庭,也证明了在地球科学中,这一现象不受空间尺度大小所影响,具备[https://en.wikipedia.org/wiki/Scale_invariance 尺度不变性](scale invariance)。气候网络或许也可被视作小世界网络,其中的联系具备长度不一的尺度。<ref name="a26">#Gozolchiani, A.; Havlin, S.; Yamasaki, K. (2011). "Emergence of El Niño as an Autonomous Component in the Climate Network". Physical Review Letters. 107 (14): 148501. arXiv:1010.2605 Freely accessible. Bibcode:2011PhRvL.107n8501G. doi:10.1103/PhysRevLett.107.148501. ISSN 0031-9007. PMID 22107243.
 +
</ref>
 +
 +
===计算应用===
 +
 +
小世界网络已被用于估算存储于大型数据库中信息的可用性。这种度量方法被称为“小世界数据变换法”<ref name="a27"># http://mike2.openmethodology.org/wiki/Small_Worlds_Data_Transformation_Measure</ref><ref name="a28">#Hillard, Robert (2010). Information-Driven Business. Wiley. ISBN 978-0-470-62577-4.</ref>数据库链接与小世界网络对齐度越高,用户越有可能在将来提取到信息。这种可用性通常以牺牲存储在同等空间中的信息量为代价来取得。
 +
 +
[https://en.wikipedia.org/wiki/Freenet Freenet]和[https://en.wikipedia.org/wiki/Bitcoin_Cash 比特币]点对点网络已经被证明在模拟中构筑了小世界网络<ref name="a29">#Sandberg, Oskar. "[https://freenetproject.org/papers/lic.pdf Searching in a Small World]" (PDF).
 +
</ref>,使得信息的存储和提取,能够随着网络扩展,而有效扩张。
 +
 +
===大脑中的小世界网络===
 +
 +
大脑中连接<ref name="a30">#Sporns, Olaf; Chialvo DR; Kaiser M; Hilgetag CC (2004). "Organization, development and function of complex brain networks". Trends Cogn Sci. 8 (9): 418–425. doi:10.1016/j.tics.2004.07.008. PMID 15350243.
 +
</ref>与皮层神经元的同步网络<ref name="a31">#Yu, Shan; D. Huang; W. Singer; D. Nikolić (2008). "[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583154 A Small World of Neuronal Synchrony]". Cerebral Cortex. 18 (12): 2891–2901. doi:10.1093/cercor/bhn047. PMC 2583154 Freely accessible. PMID 18400792.</ref>都体现出了小世界拓扑结构。
 +
 +
小世界神经元网络可以呈现出[https://en.wikipedia.org/wiki/Short-term_memory 短期记忆]。Solla等人提出的计算机模型具有两个稳定状态<ref name="a32">#Cohen, Philip. [https://www.newscientist.com/article.ns?id=dn5012 Small world networks key to memory]. New Scientist. 26 May 2004.</ref><ref name="a33">#Sara Solla's [http://online.itp.ucsb.edu/online/brain04/solla/ Lecture & Slides: Self-Sustained Activity in a Small-World Network of Excitable Neurons]</ref>——一种被认为在[https://en.wikipedia.org/wiki/Memory 记忆]存储中十分重要的特性(被称为[https://en.wikipedia.org/wiki/Bistability 双稳态])。激活脉冲在神经元之间产生自我维持的通信活动循环。第二波脉冲则终止这一活动。脉冲让这一系统在稳定状态间切换:流动(记录“记忆”)以及停滞(保留记忆)。小世界神经元网络也被用于建模,了解[https://en.wikipedia.org/wiki/Seizures 病情发作]的原理。<ref name="a34">#Ponten, S.C.; Bartolomei, F.; Stam, C.J. (April 2007). "Small-world networks and epilepsy: Graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures". Clinical Neurophysiology. 118 (4): 918–927. doi:10.1016/j.clinph.2006.12.002.</ref>
 +
 +
在更一般的层次上,大脑中的许多大规模神经网络,例如视觉系统和脑干,都体现出了小世界特性。<ref name="a5"></ref>
    
==参见==
 
==参见==
330

个编辑