'''小世界网络'''是一种[https://en.wikipedia.org/wiki/Graph_(discrete_mathematics) 数学图]。在此类图中,绝大多数节点彼此之间并不相邻,但任一给定节点的邻居们却很可能彼此是邻居,并且大多数节点都可以从任意其他节点,用较少的步或跳跃访问到。具体来说,小世界网络的定义如下:如果网络中随机选择的两个节点之间的距离<i>L</i>(即访问彼此所需要的步数),与网络中节点数量<i>N</i>的对数成比例增长,(即<ref name="a1">http://www.nature.com/nature/journal/v393/n6684/full/393440a0.html</ref>: <math>L \propto \log N</math>),且网络的[https://en.wikipedia.org/wiki/Clustering_coefficient 集聚系数](Clustering Coefficient)不小,那么,这样的网络就是小世界网络。在社交网络中,这种网络属性意味着一些彼此并不相识的人,可以通过一条很短的[https://en.wikipedia.org/wiki/Acquaintance 熟人]链条被联系在一起,这也就是[[小世界现象]]。许多经验网络图都展示出了[[小世界现象]],例如[https://en.wikipedia.org/wiki/Social_networks 社交网络]、[https://en.wikipedia.org/wiki/Internet 互联网]的底层架构、诸如Wikipedia的百科类网站以及[https://en.wikipedia.org/wiki/Gene_regulatory_network 基因网络]等等。 | '''小世界网络'''是一种[https://en.wikipedia.org/wiki/Graph_(discrete_mathematics) 数学图]。在此类图中,绝大多数节点彼此之间并不相邻,但任一给定节点的邻居们却很可能彼此是邻居,并且大多数节点都可以从任意其他节点,用较少的步或跳跃访问到。具体来说,小世界网络的定义如下:如果网络中随机选择的两个节点之间的距离<i>L</i>(即访问彼此所需要的步数),与网络中节点数量<i>N</i>的对数成比例增长,(即<ref name="a1">http://www.nature.com/nature/journal/v393/n6684/full/393440a0.html</ref>: <math>L \propto \log N</math>),且网络的[https://en.wikipedia.org/wiki/Clustering_coefficient 集聚系数](Clustering Coefficient)不小,那么,这样的网络就是小世界网络。在社交网络中,这种网络属性意味着一些彼此并不相识的人,可以通过一条很短的[https://en.wikipedia.org/wiki/Acquaintance 熟人]链条被联系在一起,这也就是[[小世界现象]]。许多经验网络图都展示出了[[小世界现象]],例如[https://en.wikipedia.org/wiki/Social_networks 社交网络]、[https://en.wikipedia.org/wiki/Internet 互联网]的底层架构、诸如Wikipedia的百科类网站以及[https://en.wikipedia.org/wiki/Gene_regulatory_network 基因网络]等等。 |