更改

添加247字节 、 2020年8月16日 (日) 22:26
无编辑摘要
第42行: 第42行:  
The formula implies that in any undirected graph, the number of vertices with odd degree is even. This statement (as well as the degree sum formula) is known as the handshaking lemma. The latter name comes from a popular mathematical problem, to prove that in any group of people the number of people who have shaken hands with an odd number of other people from the group is even.
 
The formula implies that in any undirected graph, the number of vertices with odd degree is even. This statement (as well as the degree sum formula) is known as the handshaking lemma. The latter name comes from a popular mathematical problem, to prove that in any group of people the number of people who have shaken hands with an odd number of other people from the group is even.
   −
该公式表明,在任何无向图中,拥有奇数度值的顶点的个数是偶数。这个陈述(以及度和公式)被称为握手引理。该名字来自一个有趣的数学问题,即证明无论该群体内有多少人,与奇数个人握过手的人数是偶数。
+
该公式表明,在任何无向图中,拥有奇数度值的顶点的个数是偶数。这个陈述(以及度和公式)被称为'''<font color="#ff8000">握手引理 Handshaking Lemma</font>'''。该名字来自一个有趣的数学问题,即证明无论该群体内有多少人,与奇数个人握过手的人数是偶数。
 
   --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])标题涉及到的专业名词 要么标注一下标题要么标注一下正文~
 
   --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])标题涉及到的专业名词 要么标注一下标题要么标注一下正文~
   第118行: 第118行:     
*[[Indegree]], [[outdegree]] for [[digraph (mathematics)|digraph]]s
 
*[[Indegree]], [[outdegree]] for [[digraph (mathematics)|digraph]]s
有向图的入度和出度
+
'''<font color="#ff8000">有向图的入度和出度 Indegree,Outdegree For Digraph</font>'''
 
*[[Degree distribution]]
 
*[[Degree distribution]]
度分布
+
'''<font color="#ff8000">度分布 Degree Distribution</font>'''
 
*[[bipartite graph|degree sequence]] for bipartite graphs
 
*[[bipartite graph|degree sequence]] for bipartite graphs
二分图的度序列
+
'''<font color="#ff8000">二分图的度序列 Degree Sequence For Bipartite Graphs </font>'''
     
75

个编辑