更改

添加397字节 、 2020年8月16日 (日) 22:32
无编辑摘要
第94行: 第94行:     
*A vertex with degree 0 is called an [[isolated vertex]].
 
*A vertex with degree 0 is called an [[isolated vertex]].
度值为0的顶点成为孤立顶点
+
度值为0的顶点成为'''<font color="#ff8000">孤立顶点 Isolated Vertex</font>'''
 
*A vertex with degree 1 is called a leaf vertex or end vertex, and the edge incident with that vertex is called a pendant edge. In the graph on the right, {3,5} is a pendant edge. This terminology is common in the study of [[tree (graph theory)|tree]]s in graph theory and especially [[tree (data structure)|tree]]s as [[data structure]]s.
 
*A vertex with degree 1 is called a leaf vertex or end vertex, and the edge incident with that vertex is called a pendant edge. In the graph on the right, {3,5} is a pendant edge. This terminology is common in the study of [[tree (graph theory)|tree]]s in graph theory and especially [[tree (data structure)|tree]]s as [[data structure]]s.
度值为1的顶点称为叶顶点或尾顶点,该顶点的入射边称为悬挂边。在右侧的图中,{3,5}就是一个悬挂边。在图论中,该术语主要在研究“树”时使用,特别是具有树形结构的数据。
+
度值为1的顶点称为叶顶点或尾顶点,该顶点的入射边称为'''<font color="#ff8000">悬挂边 Pendant Edge</font>'''。在右侧的图中,{3,5}就是一个悬挂边。在图论中,该术语主要在研究'''<font color="#ff8000">树 Tree</font>'''时使用,特别是具有树形结构的数据。
 
* A vertex with degree ''n''&nbsp;&minus;&nbsp;1  in a graph on ''n'' vertices is called a [[dominating vertex]].
 
* A vertex with degree ''n''&nbsp;&minus;&nbsp;1  in a graph on ''n'' vertices is called a [[dominating vertex]].
在有n个顶点的图中,度值为n-1的顶点叫作主导顶点
+
在有n个顶点的图中,度值为n-1的顶点叫作'''<font color="#ff8000">主导顶点 Dominating Vertex</font>'''
      第104行: 第104行:  
全局属性
 
全局属性
 
*If each vertex of the graph has the same degree&nbsp;''k'' the graph is called a [[regular graph|''k''-regular graph]] and the graph itself is said to have degree&nbsp;''k''. Similarly, a [[bipartite graph]] in which every two vertices on the same side of the bipartition as each other have the same degree is called a [[biregular graph]].
 
*If each vertex of the graph has the same degree&nbsp;''k'' the graph is called a [[regular graph|''k''-regular graph]] and the graph itself is said to have degree&nbsp;''k''. Similarly, a [[bipartite graph]] in which every two vertices on the same side of the bipartition as each other have the same degree is called a [[biregular graph]].
如果一个图中的所有顶点的度值都为k,该图被称为k-正则图,该图的度值也为k。同样的,同侧每两个顶点都具有相同度值的二分图叫作二分正则图。
+
如果一个图中的所有顶点的度值都为k,该图被称为'''<font color="#ff8000">''k''-正则图 ''k''-regular graph</font>''',该图的度值也为k。同样的,同侧每两个顶点都具有相同度值的二分图叫作'''<font color="#ff8000">二分正则图 Biregular Graph</font>'''。
 
*An undirected, connected graph has an [[Eulerian path]] if and only if it has either 0 or 2 vertices of odd degree. If it has 0 vertices of odd degree, the Eulerian path is an Eulerian circuit.
 
*An undirected, connected graph has an [[Eulerian path]] if and only if it has either 0 or 2 vertices of odd degree. If it has 0 vertices of odd degree, the Eulerian path is an Eulerian circuit.
当且仅当具有0或2个奇数度的顶点时,无向连通图才具有欧拉路径。 如果它具有0个奇数度的顶点,则欧拉路径为欧拉回路。
+
当且仅当具有0或2个奇数度的顶点时,无向连通图才具有'''<font color="#ff8000">欧拉路径 Eulerian Path</font>'''。 如果它具有0个奇数度的顶点,则欧拉路径为'''<font color="#ff8000">欧拉回路 Eulerian Circuit</font>'''。
 
*A directed graph is a [[pseudoforest]] if and only if every vertex has outdegree at most&nbsp;1. A [[functional graph]] is a special case of a pseudoforest in which every vertex has outdegree exactly&nbsp;1.
 
*A directed graph is a [[pseudoforest]] if and only if every vertex has outdegree at most&nbsp;1. A [[functional graph]] is a special case of a pseudoforest in which every vertex has outdegree exactly&nbsp;1.
 
有向图是当且仅当每个顶点的度值最大为1时才是'''<font color="#ff8000">伪森林 Pseudoforest</font>'''。'''<font color="#ff8000">功能图 Functional Graph</font>'''是伪森林的特例,其中每个顶点的度数都恰好为1。
 
有向图是当且仅当每个顶点的度值最大为1时才是'''<font color="#ff8000">伪森林 Pseudoforest</font>'''。'''<font color="#ff8000">功能图 Functional Graph</font>'''是伪森林的特例,其中每个顶点的度数都恰好为1。
75

个编辑