更改

添加4字节 、 2020年8月17日 (一) 21:10
第178行: 第178行:  
A similar reinterpretation of adjacency matrices may be used to show a one-to-one correspondence between directed graphs (on a given number of labeled vertices, allowing self-loops) and balanced bipartite graphs, with the same number of vertices on both sides of the bipartition. For, the adjacency matrix of a directed graph with  vertices can be any (0,1) matrix of size <math>n\times n</math>, which can then be reinterpreted as the adjacency matrix of a bipartite graph with  vertices on each side of its bipartition.
 
A similar reinterpretation of adjacency matrices may be used to show a one-to-one correspondence between directed graphs (on a given number of labeled vertices, allowing self-loops) and balanced bipartite graphs, with the same number of vertices on both sides of the bipartition. For, the adjacency matrix of a directed graph with  vertices can be any (0,1) matrix of size <math>n\times n</math>, which can then be reinterpreted as the adjacency matrix of a bipartite graph with  vertices on each side of its bipartition.
   −
关于'''<font color="#ff8000"> 邻接矩阵adjacency matrices</font>'''的另一个相似解释可以被用于展示有向图和均衡二分图(二分子集顶点数相等)之间的一一对应关系(在给定数量的标记顶点上,允许自循环)。例如,具有''n''个顶点的有向图的邻接矩阵可以是大小为''n''×''n''的任何(0,1)矩阵,然后可以将其重新解释为:具有相同顶点数n的同边子集的二分图的邻接矩阵。通过这种构建方式,二分图可以被解释为是一个有向图的'''<font color="#ff8000"> 二分双重覆盖bipartite double cover</font>'''。
+
关于'''<font color="#ff8000"> 邻接矩阵adjacency matrices</font>'''的另一个相似解释可以被用于展示有向图和均衡二分图(二分子集顶点数相等)之间的一一对应关系(在给定数量的标记顶点上,允许自循环)。例如,具有''n''个顶点的有向图的邻接矩阵可以是大小为''n''×''n''的任何(0,1)矩阵,然后可以将其重新解释为:具有相同顶点数''n''的同边子集的二分图的邻接矩阵。通过这种构建方式,二分图可以被解释为是一个有向图的'''<font color="#ff8000"> 二分双重覆盖bipartite double cover</font>'''。
    
== Algorithms 算法 ==
 
== Algorithms 算法 ==
961

个编辑