更改

添加2,902字节 、 2020年8月18日 (二) 13:42
无编辑摘要
第9行: 第9行:  
Crowd simulation is the process of simulating the movement (or ) of a large number of entities or characters. It is commonly used to create virtual scenes for visual media like films and video games, and is also used in crisis training, architecture and urban planning, and evacuation simulation.
 
Crowd simulation is the process of simulating the movement (or ) of a large number of entities or characters. It is commonly used to create virtual scenes for visual media like films and video games, and is also used in crisis training, architecture and urban planning, and evacuation simulation.
   −
'''人群模拟Crowd simulation'''是对大量实体或'''字符characters'''(????)的运动进行模拟的过程。它常用于电影和视频游戏等视觉媒体中创建虚拟场景,也用于危机培训、建筑和城市规划以及'''人群疏散模拟Evacuation Simulations'''。
+
'''<font color = '#ff8000'>人群模拟Crowd simulation</font>'''是对大量实体或'''<font color = '#ff8000'>字符characters</font>'''的运动进行模拟的过程。它常用于电影和视频游戏等视觉媒体中创建虚拟场景,也用于危机培训、建筑和城市规划以及'''<font color = '#ff8000'>人群疏散模拟Evacuation Simulations</font>'''。
      第17行: 第17行:  
Crowd simulation may focus on aspects that target different applications. For realistic and fast rendering of a crowd for visual media or virtual cinematography, reduction of the complexity of the 3D scene and image-based rendering are used, while variations in appearance help present a realistic population.
 
Crowd simulation may focus on aspects that target different applications. For realistic and fast rendering of a crowd for visual media or virtual cinematography, reduction of the complexity of the 3D scene and image-based rendering are used, while variations in appearance help present a realistic population.
   −
人群模拟可能专注于针对不同应用程序的方面。'''视觉媒体visual media'''或'''虚拟摄影virtual cinematography'''人群的真实和快速渲染使用减少 3D 场景的复杂性和基于图像的渲染,同时其外观的变化有助于展现一个真实的人群。
+
人群模拟可能专注于针对不同应用程序的方面。'''<font color = '#ff8000'>视觉媒体visual media</font>'''或'''<font color = '#ff8000'>虚拟摄影virtual cinematography</font>'''人群的真实和快速渲染使用减少 3D 场景的复杂性和基于图像的渲染,同时其外观的变化有助于展现一个真实的人群。
      第25行: 第25行:  
In games and applications intended to replicate real-life human crowd movement, like in evacuation simulations, simulated agents may need to navigate towards a goal, avoid collisions, and exhibit other human-like behavior. Many crowd steering algorithms have been developed to lead simulated crowds to their goals realistically. Some more general systems are researched that can support different kinds of agents (like cars and pedestrians), different levels of abstraction(like individual and continuum), agents interacting with smart objects, and more complex physical and social dynamics.
 
In games and applications intended to replicate real-life human crowd movement, like in evacuation simulations, simulated agents may need to navigate towards a goal, avoid collisions, and exhibit other human-like behavior. Many crowd steering algorithms have been developed to lead simulated crowds to their goals realistically. Some more general systems are researched that can support different kinds of agents (like cars and pedestrians), different levels of abstraction(like individual and continuum), agents interacting with smart objects, and more complex physical and social dynamics.
   −
在模拟真实人群运动的游戏和应用程序,比如人群疏散模拟中,'''模拟的主体 Simulated Agents'''可能需要到达某个目标,避免碰撞,并展示其他类似人的行为。现在已经有很多种'''人群引导算法Crowd Steering Algorithms'''能实际地引导模拟人群到达他们的目标。一些更一般的系统被研发出来支持不同的主体类型(如汽车和行人)和抽象层次(如个体到'''连续体Continuum'''),支持能与'''智能对象Smart Objects'''相互作用的主体以及更复杂的物理和社会动态。
+
在模拟真实人群运动的游戏和应用程序,比如人群疏散模拟中,'''<font color = '#ff8000'>模拟的主体 Simulated Agents</font>'''可能需要到达某个目标,避免碰撞,并展示其他类似人的行为。现在已经有很多种'''<font color = '#ff8000'>人群引导算法Crowd Steering Algorithms</font>'''能实际地引导模拟人群到达他们的目标。一些更一般的系统被研发出来支持不同的主体类型(如汽车和行人)和抽象层次(如个体到'''<font color = '#ff8000'>连续体Continuum</font>'''),支持能与'''<font color = '#ff8000'>智能对象Smart Objects</font>'''相互作用的主体以及更复杂的物理和社会动态。
      第35行: 第35行:  
There has always been a deep-seated interest in the understanding and gaining control of motional and behavior of crowds of people. Many major advancements have taken place since the beginnings of research within the realm of crowd simulation. Evidently many new findings are continually made and published following these which improve the scalability, flexibility, applicability, and realism of simulations:
 
There has always been a deep-seated interest in the understanding and gaining control of motional and behavior of crowds of people. Many major advancements have taken place since the beginnings of research within the realm of crowd simulation. Evidently many new findings are continually made and published following these which improve the scalability, flexibility, applicability, and realism of simulations:
   −
理解和控制人群的运动和行为一直是人们的兴趣所在。自从人群模拟领域的研究开始以来,人们已经取得了许多重大进展。显然,许多新发现正不断地被提出、被发表。这些发现提高了仿真模拟的'''可扩展性Scalability'''、'''灵活性Flexibility'''、'''适用性Applicability'''和'''真实性Realism''' :
+
理解和控制人群的运动和行为一直是人们的兴趣所在。自从人群模拟领域的研究开始以来,人们已经取得了许多重大进展。显然,许多新发现正不断地被提出、被发表。这些发现提高了仿真模拟的'''<font color = '#ff8000'>可扩展性Scalability</font>'''、'''<font color = '#ff8000'>灵活性Flexibility</font>'''、'''<font color = '#ff8000'>适用性Applicability</font>'''和'''<font color = '#ff8000'>真实性Realism</font>''' :
      第43行: 第43行:  
In 1987, behavioral animation was introduced and developed by Craig Reynolds. He had simulated flocks of birds alongside schools of fish for the purpose of studying group intuition and movement. All agents within these simulations were given direct access to the respective positions and velocities of their surrounding agents. The theorization and study set forth by Reynolds was improved and built upon in 1994 by Xiaoyuan Tu, Demetri Terzopoulos and Radek Grzeszczuk. The realistic quality of simulation was engaged with as the individual agents were equipped with synthetic vision and a general view of the environment within which they resided, allowing for a perceptual awareness within their dynamic habitats.
 
In 1987, behavioral animation was introduced and developed by Craig Reynolds. He had simulated flocks of birds alongside schools of fish for the purpose of studying group intuition and movement. All agents within these simulations were given direct access to the respective positions and velocities of their surrounding agents. The theorization and study set forth by Reynolds was improved and built upon in 1994 by Xiaoyuan Tu, Demetri Terzopoulos and Radek Grzeszczuk. The realistic quality of simulation was engaged with as the individual agents were equipped with synthetic vision and a general view of the environment within which they resided, allowing for a perceptual awareness within their dynamic habitats.
   −
1987年,'''雷诺兹Craig Reynolds'''引入并发展了'''行为动画behavioral animation'''。为了展示'''群体直观Group Intuition''''''研究群体运动Group Movement''',他模拟了鸟群和鱼群。在这些模拟中的所有主体都可以直接访问它们周围各个主体的位置和速度。雷诺兹的理论建立和研究设计是在Xiaoyuan Tu、'''特佐普洛斯Demetri Terzopoulos'''和'''格兹兹丘克Radek Grzeszczuk'''1994年的研究之上改进和发展的。
+
1987年,'''<font color = '#ff8000'>雷诺兹Craig Reynolds</font>'''引入并发展了'''<font color = '#ff8000'>行为动画behavioral animation</font>'''。为了展示'''<font color = '#ff8000'>群体直观Group Intuition</font>'''和研究'''<font color = '#ff8000'>群体运动Group Movement</font>''',他模拟了鸟群和鱼群。在这些模拟中的所有主体都可以直接访问它们周围各个主体的位置和速度。雷诺兹的理论建立和研究设计是在Xiaoyuan Tu、'''<font color = '#ff8000'>特佐普洛斯Demetri Terzopoulos</font>'''和'''<font color = '#ff8000'>格兹兹丘克Radek Grzeszczuk</font>'''1994年的研究之上改进和发展的。
仿真模拟的真实性(--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) realistic quality 真实性)和每个主体都有'''合成视觉synthetic vision'''和对生存环境的总体观点有关。这一点允许每个主体在'''动态栖息地Dynamic Habitats'''内具有'''知觉意识Perceptual Awareness'''。
+
仿真模拟的'''<font color = '#ff8000'>真实性realistic quality</font>'''和每个主体都有'''<font color = '#ff8000'>合成视觉synthetic vision</font>'''和对生存环境的总体观点有关。这一点允许每个主体在'''<font color = '#ff8000'>动态栖息地Dynamic Habitats</font>'''内具有'''<font color = '#ff8000'>知觉意识Perceptual Awareness</font>'''。
--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) The realistic quality of simulation... 这一句话分成两句看,并且加入了一些个人理解,不知含义是否正确
+
 
 +
  --[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) The realistic quality of simulation... 这一句话分成两句看,并且加入了一些个人理解,不知含义是否正确
      第53行: 第54行:  
Initial research in the field of crowd simulation began in 1997 with Daniel Thalmann's supervision of Soraia Raupp Musse's PhD thesis. These two present a new model of crowd behavior in order to create a simulation of generic populations. Here a relation is drawn between the autonomous behavior of the individual within the crowd and the emergent behavior originating from this.
 
Initial research in the field of crowd simulation began in 1997 with Daniel Thalmann's supervision of Soraia Raupp Musse's PhD thesis. These two present a new model of crowd behavior in order to create a simulation of generic populations. Here a relation is drawn between the autonomous behavior of the individual within the crowd and the emergent behavior originating from this.
   −
最初的人群模拟领域研究始于1997年'''塔尔曼Daniel Thalmann'''指导Soraia Raupp Musse的博士论文。他们两人提出了一个新的人群行为模型,以创建一个一般人群的仿真模拟。在这个模型中,他们给出了群体中个体的自主行为和由此涌现的行为之间的一种关系。
+
最初的人群模拟领域研究始于1997年'''<font color = '#ff8000'>塔尔曼Daniel Thalmann</font>'''指导Soraia Raupp Musse的博士论文。他们两人提出了一个新的人群行为模型,以创建一个一般人群的仿真模拟。在这个模型中,他们给出了群体中个体的自主行为和由此涌现的行为之间的一种关系。
      第61行: 第62行:  
In 1999, individualistic navigation began its course within the realm of crowd simulation via continued research of Craig Reynolds. Steering behaviors are proven to play a large role in the process of automating agents within a simulation. Reynolds states the processes of low-level locomotion to be dependent and reliant on mid-level steering behaviors and higher-level goal states and path finding strategies. Building off of the advanced work of Reynolds, Musse and Thalmann began to study the modeling of real time simulations of these crowds, and their applications to human behavior. The control of human crowds was designated as a hierarchical organization with levels of autonomy amongst agents. This marks the beginnings of modeling individual behavior in its most elementary form on humanoid agents.
 
In 1999, individualistic navigation began its course within the realm of crowd simulation via continued research of Craig Reynolds. Steering behaviors are proven to play a large role in the process of automating agents within a simulation. Reynolds states the processes of low-level locomotion to be dependent and reliant on mid-level steering behaviors and higher-level goal states and path finding strategies. Building off of the advanced work of Reynolds, Musse and Thalmann began to study the modeling of real time simulations of these crowds, and their applications to human behavior. The control of human crowds was designated as a hierarchical organization with levels of autonomy amongst agents. This marks the beginnings of modeling individual behavior in its most elementary form on humanoid agents.
   −
1999年,通过雷诺兹的持续研究,'''个人主义导航individualistic navigation'''开始了它在人群模拟领域的进程。仿真中,'''指导行为Steering Behaviors'''在自动化主体过程中起着重要的作用。雷诺兹指出,低水平运动的过程依赖中等水平的指导行为和高水平的目标状态以及'''路径寻找策略Path Finding Strategies'''。在 Reynolds、 Musse 和 Thalmann 工作的基础上,他们开始研究人群的实时模拟模型,以及它们在人类行为中的应用。对人群的控制被指定为一个具有不同主体自治水平的层级组织结构。这标志着在类似人的主体上,以最基本的形式建立个体行为模型的开始。
+
1999年,通过雷诺兹的持续研究,'''<font color = '#ff8000'>个人主义导航individualistic navigation</font>'''开始了它在人群模拟领域的进程。仿真中,'''<font color = '#ff8000'>指导行为Steering Behaviors</font>'''在自动化主体过程中起着重要的作用。雷诺兹指出,低水平运动的过程依赖中等水平的指导行为和高水平的目标状态以及'''<font color = '#ff8000'>路径寻找策略Path Finding Strategies</font>'''。在 Reynolds、 Musse 和 Thalmann 工作的基础上,他们开始研究人群的实时模拟模型,以及它们在人类行为中的应用。对人群的控制被指定为一个具有不同主体自治水平的层级组织结构。这标志着在类似人的主体上,以最基本的形式建立个体行为模型的开始。
      第68行: 第69行:  
Coinciding with publications regarding human behavior models and simulations of group behaviors, Matt Anderson, Eric McDaniel, and Stephen Chenney's proposal of constraints on behavior gained popularity. The positioning of constraints on group animations was presented to be able to be done at any time within the simulation. This process of applying constraints to the behavioral model is undergone in a two-fold manner, by first determining the initial set of goal trajectories coinciding with the constraints, and then applying behavioral rules to these paths to select those which do not violate them.
 
Coinciding with publications regarding human behavior models and simulations of group behaviors, Matt Anderson, Eric McDaniel, and Stephen Chenney's proposal of constraints on behavior gained popularity. The positioning of constraints on group animations was presented to be able to be done at any time within the simulation. This process of applying constraints to the behavioral model is undergone in a two-fold manner, by first determining the initial set of goal trajectories coinciding with the constraints, and then applying behavioral rules to these paths to select those which do not violate them.
   −
和人类行为模型和群体行为模拟的论文发表恰巧同一时期,Matt Anderson、Eric McDaniel和Stephen Chenney关于'''行为约束Constraints on Behavior'''
+
和人类行为模型和群体行为模拟的论文发表恰巧同一时期,Matt Anderson、Eric McDaniel和Stephen Chenney关于'''<font color = '#ff8000'>行为约束Constraints on Behavior</font>'''
--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) 约束,还是约束条件,还是什么算法、程序?
+
  --[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) 约束,还是约束条件,还是什么算法、程序?
的研究计划大受欢迎。他们展示了对'''群体动画Group Animations'''约束的定位能够在程序模拟中的任何时候完成。将约束应用到行为模型的过程分为两步: 首先,确定与约束条件一致的初始的'''目标轨迹goal trajectories'''集;然后,将行为规则应用到这些路径上,去选择那些不违反约束条件的路径。
+
的研究计划大受欢迎。他们展示了对'''<font color = '#ff8000'>群体动画Group Animations</font>'''约束的定位能够在程序模拟中的任何时候完成。将约束应用到行为模型的过程分为两步: 首先,确定与约束条件一致的初始的'''<font color = '#ff8000'>目标轨迹goal trajectories</font>'''集;然后,将行为规则应用到这些路径上,去选择那些不违反约束条件的路径。
      第78行: 第79行:  
Correlating and building off of the findings proposed in his work with Musse, Thalmann, working alongside Bratislava Ulicny and Pablo de Heras Ciechomski, proposed a new model which allowed for interactive authoring of agents at the level of an individual, a group of agents and the entirety of a crowd. A brush metaphor is introduced to distribute, model and control crowd members in real-time with immediate feedback.
 
Correlating and building off of the findings proposed in his work with Musse, Thalmann, working alongside Bratislava Ulicny and Pablo de Heras Ciechomski, proposed a new model which allowed for interactive authoring of agents at the level of an individual, a group of agents and the entirety of a crowd. A brush metaphor is introduced to distribute, model and control crowd members in real-time with immediate feedback.
   −
基于他和Musse合作中提出的研究结果,Thalmann和Bratislava Ulicny以及Pablo de Heras Ciechomski提出了一种新的模型。这种模型允许在个人、一个群组和整个群体的层面上进行主体的'''交互式创作Interactive Authoring'''。他们引入了一个刷子的隐喻,来实时分配、建模和控制人群成员,并提供即时反馈。
+
基于他和Musse合作中提出的研究结果,Thalmann和Bratislava Ulicny以及Pablo de Heras Ciechomski提出了一种新的模型。这种模型允许在个人、一个群组和整个群体的层面上进行主体的'''<font color = '#ff8000'>交互式创作Interactive Authoring</font>'''。他们引入了一个刷子的隐喻,来实时分配、建模和控制人群成员,并提供即时反馈。
    
== Crowd dynamics 人群动态==
 
== Crowd dynamics 人群动态==
第102行: 第103行:  
Flow-based Approach: Flow based crowd simulations focus on the crowd as a whole rather than its components. As such individuals do not have any distinctive behaviors that occur due to input from their surroundings and behavioral factors are largely reduced. This model is mainly used to estimate the flow of movement of a large and dense crowd in a given environment. Best used in studying large crowd, short time objectives.
 
Flow-based Approach: Flow based crowd simulations focus on the crowd as a whole rather than its components. As such individuals do not have any distinctive behaviors that occur due to input from their surroundings and behavioral factors are largely reduced. This model is mainly used to estimate the flow of movement of a large and dense crowd in a given environment. Best used in studying large crowd, short time objectives.
   −
'''基于流的方法Flow-based Approach''': 基于流的人群模拟关注于人群作为一个整体,而不是人群的各种组成部分。即,人群中的个体没有任何独特的行为是由于他们周围的环境引起的,并且行为因素在很大程度上被减少了。该模型主要用于估计给定环境下大型密集人群的'''运动流the flow of movement'''。最适用于研究人群大、时间短的目标。
+
'''<font color = '#ff8000'>基于流的方法Flow-based Approach</font>''': 基于流的人群模拟关注于人群作为一个整体,而不是人群的各种组成部分。即,人群中的个体没有任何独特的行为是由于他们周围的环境引起的,并且行为因素在很大程度上被减少了。该模型主要用于估计给定环境下大型密集人群的'''<font color = '#ff8000'>运动流the flow of movement</font>'''。最适用于研究人群大、时间短的目标。
      第110行: 第111行:  
Entity-based Approach: Models that implement a set of physical, predefined, and global laws meant to simulate social/psychological factors that occur in individuals that are a part of a crowd fall under this category. Entities in this case do not have the capacity to, in a sense, think for themselves. All movements are determined by the global laws being enforced on them. Simulations that use this model often do so to research crowd dynamics such as jamming and flocking. Small to medium-sized crowds with short term objectives fit this approach best.
 
Entity-based Approach: Models that implement a set of physical, predefined, and global laws meant to simulate social/psychological factors that occur in individuals that are a part of a crowd fall under this category. Entities in this case do not have the capacity to, in a sense, think for themselves. All movements are determined by the global laws being enforced on them. Simulations that use this model often do so to research crowd dynamics such as jamming and flocking. Small to medium-sized crowds with short term objectives fit this approach best.
   −
'''基于实体的方法Entity-based Approach''': 这是一些实施一套物理的、预先确定的和整体规则的模型,它们旨在模拟发生在属于某群体的一部分个人身上的社会或心理因素。在这类模型中,实体在某种意义上没有自己思考的能力。他们所有运动都是由整体规则决定的。这个模型的仿真模拟经常用来研究人群动态,例如'''拥挤jamming'''和'''聚集flocking'''。中小型群体和较短时间的目标最适合这种方法。
+
'''<font color = '#ff8000'>基于实体的方法Entity-based Approach</font>''': 这是一些实施一套物理的、预先确定的和整体规则的模型,它们旨在模拟发生在属于某群体的一部分个人身上的社会或心理因素。在这类模型中,实体在某种意义上没有自己思考的能力。他们所有运动都是由整体规则决定的。这个模型的仿真模拟经常用来研究人群动态,例如'''<font color = '#ff8000'>拥挤jamming</font>'''和'''<font color = '#ff8000'>聚集flocking</font>'''。中小型群体和较短时间的目标最适合这种方法。
      第126行: 第127行:  
One way to simulate virtual crowds is to use a particle system. Particle systems were first introduced in computer graphics by W. T. Reeves in 1983. A particle system is a collection of a number of individual elements or particles. Each particle is able to act autonomously and is assigned a set of physical attributes (such as color, size and velocity).
 
One way to simulate virtual crowds is to use a particle system. Particle systems were first introduced in computer graphics by W. T. Reeves in 1983. A particle system is a collection of a number of individual elements or particles. Each particle is able to act autonomously and is assigned a set of physical attributes (such as color, size and velocity).
   −
一种模拟虚拟人群的方法是使用'''粒子系统 Particle System'''。1983年, W. T. Reeves 在'''计算机图形学 Computer Graphics'''中首次引入了粒子系统。粒子系统是很多单个元素或粒子的集合。每个粒子都能够自主行动,并被赋予一组物理属性(如颜色、大小和速度)。
+
一种模拟虚拟人群的方法是使用'''<font color = '#ff8000'>粒子系统 Particle System</font>'''。1983年, W. T. Reeves 在'''<font color = '#ff8000'>计算机图形学 Computer Graphics</font>'''中首次引入了粒子系统。粒子系统是很多单个元素或粒子的集合。每个粒子都能够自主行动,并被赋予一组物理属性(如颜色、大小和速度)。
      第175行: 第176行:  
Patils algorithm's most important and distinctive feature is that it utilizes the concept of navigation fields for directing agents. This is different from a guidance field; a guidance field is an area around the agent in which the agent is capable of "seeing"/detecting information. Guidance fields are typically used for avoiding obstacles, dynamic obstacles (obstacles that move) in particular. Every agent possesses its own guidance field. A navigation field, on the other hand, is a vector field which calculates the minimum cost path for every agent so that every agent arrives at its own goal position.
 
Patils algorithm's most important and distinctive feature is that it utilizes the concept of navigation fields for directing agents. This is different from a guidance field; a guidance field is an area around the agent in which the agent is capable of "seeing"/detecting information. Guidance fields are typically used for avoiding obstacles, dynamic obstacles (obstacles that move) in particular. Every agent possesses its own guidance field. A navigation field, on the other hand, is a vector field which calculates the minimum cost path for every agent so that every agent arrives at its own goal position.
   −
Patils 算法最重要且具有区分性的特征是它利用了'''导航场Navigation Fields'''的概念来指导主体。这不同于'''指导场Guidance Field'''; 指导场是主体周围的一个区域,主体可以在其中“看到”或检测到信息。指导场通常用于避开障碍物,特别是动态障碍物(移动的障碍物)。每个主体都有自己的指导场。另一方面,导航场是一个'''向量场vector field''',它为每个主体计算'''最小代价路径minimum cost path''',使每个主体到达自己的目标位置。
+
Patils 算法最重要且具有区分性的特征是它利用了'''<font color = '#ff8000'>导航场Navigation Fields</font>'''的概念来指导主体。这不同于'''<font color = '#ff8000'>指导场Guidance Field</font>'''; 指导场是主体周围的一个区域,主体可以在其中“看到”或检测到信息。指导场通常用于避开障碍物,特别是动态障碍物(移动的障碍物)。每个主体都有自己的指导场。另一方面,导航场是一个'''<font color = '#ff8000'>向量场vector field</font>''',它为每个主体计算'''<font color = '#ff8000'>最小代价路径minimum cost path</font>''',使每个主体到达自己的目标位置。
      第183行: 第184行:  
The navigation field can only be used properly when a path exists from every free (non-obstacle) position in the environment to one of the goal positions. The navigation field is computed using coordinates of the static objects in the environment, goal positions for each agent, and the guidance field for each agent. In order to guarantee that every agent reaches its own goal the navigation field must be free of local minima, except for the presence of sinks at the specified goals.
 
The navigation field can only be used properly when a path exists from every free (non-obstacle) position in the environment to one of the goal positions. The navigation field is computed using coordinates of the static objects in the environment, goal positions for each agent, and the guidance field for each agent. In order to guarantee that every agent reaches its own goal the navigation field must be free of local minima, except for the presence of sinks at the specified goals.
   −
只有当从环境中的每一个'''自由(无障碍)位置free (non-obstacle) position'''到某一目标位置的路径存在时,导航场才能被正确使用。导航场是使用环境中静态对象的坐标、每个主体的目标位置和指导场计算的。为了保证每个主体达到自己的目标,导航场必须不受'''局部极小值local minima'''的限制,除非在特定目标处存在'''汇sinks'''。
+
只有当从环境中的每一个'''<font color = '#ff8000'>自由(无障碍)位置free (non-obstacle) position</font>'''到某一目标位置的路径存在时,导航场才能被正确使用。导航场是使用环境中静态对象的坐标、每个主体的目标位置和指导场计算的。为了保证每个主体达到自己的目标,导航场必须不受'''<font color = '#ff8000'>局部极小值local minima</font>'''的限制,除非在特定目标处存在'''<font color = '#ff8000'>汇sinks</font>'''。
      第193行: 第194行:  
计算导航场的运行时间的公式是
 
计算导航场的运行时间的公式是
 
  <math>O(m*n*log(mn))</math>,
 
  <math>O(m*n*log(mn))</math>,
其中 m × n 是网格维数(类似于 Dijkstra 的算法)。因此,该算法仅依赖于网格分辨率,而不依赖于环境中的主体数量。但是,这种算法的内存开销很大。(--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) 或者翻译“比较占内存。”?)
+
其中 m × n 是网格维数(类似于 Dijkstra 的算法)。因此,该算法仅依赖于网格分辨率,而不依赖于环境中的主体数量。但是,这种算法的内存开销很大。
 +
  --[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) 或者翻译“比较占内存。”?
      第214行: 第216行:  
One way this association can be found is through a subjective study in which agents are randomly assigned values for these variables and participants are asked to describe each agent in terms of these personality traits. A regression may then be done to determine a correlation between these traits and the agent variables. The personality traits can then be tuned and have an appropriate effect on agent behavior.
 
One way this association can be found is through a subjective study in which agents are randomly assigned values for these variables and participants are asked to describe each agent in terms of these personality traits. A regression may then be done to determine a correlation between these traits and the agent variables. The personality traits can then be tuned and have an appropriate effect on agent behavior.
   −
为集群的主体创建个体行为模型的一种方法是使用人格特质。每个主体可能会根据一个公式调整他们个性的某些方面,这个公式将'''侵略性aggressiveness''' 或'''冲动性impulsiveness '''等方面与控制主体行为的变量联系起来。发现这种联系的一个方法是通过一个主观的研究,在这个研究中主体被随机分配这些变量的值,参与者被要求描述每个主体的这些人格特征。然后可以进行回归,以确定这些特征和主体变量之间的相关性。然后,人格特征可以被调整,并对主体行为产生适当的影响。
+
为集群的主体创建个体行为模型的一种方法是使用人格特质。每个主体可能会根据一个公式调整他们个性的某些方面,这个公式将'''<font color = '#ff8000'>侵略性aggressiveness</font>''' 或'''<font color = '#ff8000'>冲动性impulsiveness </font>'''等方面与控制主体行为的变量联系起来。发现这种联系的一个方法是通过一个主观的研究,在这个研究中主体被随机分配这些变量的值,参与者被要求描述每个主体的这些人格特征。然后可以进行回归,以确定这些特征和主体变量之间的相关性。然后,人格特征可以被调整,并对主体行为产生适当的影响。
      第222行: 第224行:  
The OCEAN personality model has been used to define a mapping between personality traits and crowd simulation parameters. Automating crowd parameter tuning with personality traits provides easy authoring of scenarios with heterogeneous crowds.
 
The OCEAN personality model has been used to define a mapping between personality traits and crowd simulation parameters. Automating crowd parameter tuning with personality traits provides easy authoring of scenarios with heterogeneous crowds.
   −
'''大五人格模型Big Five personality traits/OCEAN personality model'''定义了人格特质与人群模拟参数之间的映射关系。自动调整人群的人格特征参数使得在异质的人群中能够简便地创作场景。
+
'''<font color = '#ff8000'>大五人格模型Big Five personality traits/OCEAN personality model</font>'''定义了人格特质与人群模拟参数之间的映射关系。自动调整人群的人格特征参数使得在异质的人群中能够简便地创作场景。
      第232行: 第234行:  
The behavior of crowds in high-stress situations can be modeled using General Adaptation Syndrome theory.l Agent behavior is affected by various stressors from their environment categorized into four prototypes: time pressure, area pressure, positional stressors, and interpersonal stressors, each with associated mathematical models.
 
The behavior of crowds in high-stress situations can be modeled using General Adaptation Syndrome theory.l Agent behavior is affected by various stressors from their environment categorized into four prototypes: time pressure, area pressure, positional stressors, and interpersonal stressors, each with associated mathematical models.
   −
高压状态下的人群行为可以用'''一般适应综合征理论General Adaptation Syndrome theory'''来模拟。主体行为受到来自所处环境的各种压力源的影响,包括'''时间压力time pressure'''、'''区域压力area pressure'''、'''位置压力positional stressors'''和'''人际压力interpersonal stressors'''四个原型,每个原型都有相关的数学模型。
+
高压状态下的人群行为可以用'''<font color = '#ff8000'>一般适应综合征理论General Adaptation Syndrome theory</font>'''来模拟。主体行为受到来自所处环境的各种压力源的影响,包括'''<font color = '#ff8000'>时间压力time pressure</font>'''、'''<font color = '#ff8000'>区域压力area pressure</font>'''、'''<font color = '#ff8000'>位置压力positional stressors</font>'''和'''<font color = '#ff8000'>人际压力interpersonal stressors</font>'''四个原型,每个原型都有相关的数学模型。
      第320行: 第322行:  
Interpersonal stressors are stressors as a result of crowding by nearby agents. It can be modeled by the following formula:
 
Interpersonal stressors are stressors as a result of crowding by nearby agents. It can be modeled by the following formula:
   −
人际压力源是由于邻近主体的'''拥挤crowding'''程度而产生的压力源。它可以用下面的公式来模拟:
+
人际压力源是由于邻近主体的'''<font color = '#ff8000'>拥挤crowding</font>'''程度而产生的压力源。它可以用下面的公式来模拟:
      第344行: 第346行:  
The perceived stress follows Steven's Law and is modeled by the formula:
 
The perceived stress follows Steven's Law and is modeled by the formula:
   −
感知到的压力遵循'''史蒂芬定律Steven's Law ''',并可以用下面的公式模拟:
+
感知到的压力遵循'''<font color = '#ff8000'>史蒂芬定律Steven's Law </font>''',并可以用下面的公式模拟:
      第402行: 第404行:  
Crowd simulation can also refer to simulations based on group dynamics and crowd psychology, often in public safety planning. In this case, the focus is just the behavior of the crowd, and not the visual realism of the simulation. Crowds have been studied as a scientific interest since the end of the 19th Century. A lot of research has focused on the collective social behavior of people at social gatherings, assemblies, protests, rebellions, concerts, sporting events and religious ceremonies. Gaining insight into natural human behavior under varying types of stressful situations will allow better models to be created which can be used to develop crowd controlling strategies.
 
Crowd simulation can also refer to simulations based on group dynamics and crowd psychology, often in public safety planning. In this case, the focus is just the behavior of the crowd, and not the visual realism of the simulation. Crowds have been studied as a scientific interest since the end of the 19th Century. A lot of research has focused on the collective social behavior of people at social gatherings, assemblies, protests, rebellions, concerts, sporting events and religious ceremonies. Gaining insight into natural human behavior under varying types of stressful situations will allow better models to be created which can be used to develop crowd controlling strategies.
   −
人群模拟也可以指基于'''群体动力学Group Dynamics'''和'''群体心理学Crowd Psychology'''的模拟,通常用于'''公共安全规划Public Safety Planning'''。在这种情况下,研究的焦点只是人群的行为,而不是模拟的视觉真实性。人群自19世纪末以来一直是一个科学研究的兴趣。许多研究都关注人们在社会集会、集会、抗议、叛乱、音乐会、体育赛事和宗教仪式上的集体社会行为。在不同类型的压力情况下获得人类自然行为的洞察将创建更好的、可用于发展人群控制策略的模型。
+
人群模拟也可以指基于'''<font color = '#ff8000'>群体动力学Group Dynamics</font>'''和'''<font color = '#ff8000'>群体心理学Crowd Psychology</font>'''的模拟,通常用于'''<font color = '#ff8000'>公共安全规划Public Safety Planning</font>'''。在这种情况下,研究的焦点只是人群的行为,而不是模拟的视觉真实性。人群自19世纪末以来一直是一个科学研究的兴趣。许多研究都关注人们在社会集会、集会、抗议、叛乱、音乐会、体育赛事和宗教仪式上的集体社会行为。在不同类型的压力情况下获得人类自然行为的洞察将创建更好的、可用于发展人群控制策略的模型。
      第417行: 第419行:  
Modeling techniques of crowds vary from holistic or network approaches to understanding individualistic or behavioral aspects of each agent. For example, the Social Force Model describes a need for individuals to find a balance between social interaction and physical interaction. An approach that incorporates both aspects, and is able to adapt depending on the situation, would better describe natural human behavior, always incorporating some measure of unpredictability. With the use of multi-agent models understanding these complex behaviors has become a much more comprehensible task. With the use of this type of software, systems can now be tested under extreme conditions, and simulate conditions over long periods of time in the matter of seconds.
 
Modeling techniques of crowds vary from holistic or network approaches to understanding individualistic or behavioral aspects of each agent. For example, the Social Force Model describes a need for individuals to find a balance between social interaction and physical interaction. An approach that incorporates both aspects, and is able to adapt depending on the situation, would better describe natural human behavior, always incorporating some measure of unpredictability. With the use of multi-agent models understanding these complex behaviors has become a much more comprehensible task. With the use of this type of software, systems can now be tested under extreme conditions, and simulate conditions over long periods of time in the matter of seconds.
   −
群体的建模技术在层次上有所不同,包括理解整体或网络,也包括了解个人或行为方面的每个主体等。例如,'''社会力量模型 Social Force Model'''描述了个体在社会互动和物理互动之间寻求平衡的需求。一种结合了这两个方面,并且能够根据具体情境进行调整的方法,将更好地描述自然的人类行为,并总是包含一些对不可预测性的测量。随着多主体模型的使用,理解这些复杂的行为已经成为一个更容易理解的任务。利用这种类型的软件,现在研究人员可以在极端条件下测试系统,也可以在几秒钟内模拟长期的情况变化。
+
群体的建模技术在层次上有所不同,包括理解整体或网络,也包括了解个人或行为方面的每个主体等。例如,'''<font color = '#ff8000'>社会力量模型 Social Force Model</font>'''描述了个体在社会互动和物理互动之间寻求平衡的需求。一种结合了这两个方面,并且能够根据具体情境进行调整的方法,将更好地描述自然的人类行为,并总是包含一些对不可预测性的测量。随着多主体模型的使用,理解这些复杂的行为已经成为一个更容易理解的任务。利用这种类型的软件,现在研究人员可以在极端条件下测试系统,也可以在几秒钟内模拟长期的情况变化。
      第433行: 第435行:  
Helbing proposed a model based on physics using a particle system and socio-psychological forces in order to describe human crowd behavior in panic situation, this is now called the Helbing Model. His work is based on how the average person would react in a certain situation. Although this is a good model, there are always different types of people present in the crowd and they each have their own individual characteristics as well as how they act in a group structure. For instance, one person may not react to a panic situation, while another may stops walking and interfere in the crowd dynamics as a whole. Furthermore, depending on the group structure, the individual action can change because the agent is part of a group, for example, returning to a dangerous place in order to rescue a member of that group. Helbing's model can be generalized incorporating individualism, as proposed by Braun, Musse, Oliveira and Bodmann.
 
Helbing proposed a model based on physics using a particle system and socio-psychological forces in order to describe human crowd behavior in panic situation, this is now called the Helbing Model. His work is based on how the average person would react in a certain situation. Although this is a good model, there are always different types of people present in the crowd and they each have their own individual characteristics as well as how they act in a group structure. For instance, one person may not react to a panic situation, while another may stops walking and interfere in the crowd dynamics as a whole. Furthermore, depending on the group structure, the individual action can change because the agent is part of a group, for example, returning to a dangerous place in order to rescue a member of that group. Helbing's model can be generalized incorporating individualism, as proposed by Braun, Musse, Oliveira and Bodmann.
   −
Helbing 提出了一个基于物理学的模型,使用粒子系统和社会心理力量来描述人群在恐慌情况下的行为,这个模型现在被称为'''Helbing 模型 Helbing Model''''。他的工作基于在特定情况普通人如何反应。虽然这是一个很好的模式,但是在人群中总是有不同类型的人,他们每个人都有自己的个人特点和在群体结构中的行为方式。例如,一个人可能不会对恐慌情境做出反应,而另一个人可能会停下脚步并干扰整个人群的运动。此外,依赖群体结构个体行为可能会发生变化,因为个体是群体的一部分。例如,为了拯救该群体的一个成员而返回到一个危险的地方。如Braun, Musse, Oliveira 和 Bodmann 提出的那样,Helbing 的模型可以概括为'''合并个人主义incorporating individualism'''。
+
Helbing 提出了一个基于物理学的模型,使用粒子系统和社会心理力量来描述人群在恐慌情况下的行为,这个模型现在被称为'''<font color = '#ff8000'>Helbing 模型 Helbing Model</font>''''。他的工作基于在特定情况普通人如何反应。虽然这是一个很好的模式,但是在人群中总是有不同类型的人,他们每个人都有自己的个人特点和在群体结构中的行为方式。例如,一个人可能不会对恐慌情境做出反应,而另一个人可能会停下脚步并干扰整个人群的运动。此外,依赖群体结构个体行为可能会发生变化,因为个体是群体的一部分。例如,为了拯救该群体的一个成员而返回到一个危险的地方。如Braun, Musse, Oliveira 和 Bodmann 提出的那样,Helbing 的模型可以概括为'''<font color = '#ff8000'>合并个人主义incorporating individualism</font>'''。
      第457行: 第459行:  
  IdFamily – Identifier of the family. A family is a predefined group formed by agents who know each other
 
  IdFamily – Identifier of the family. A family is a predefined group formed by agents who know each other
   −
IdFamily:'''家族family'''标识符。家族是由相互认识的主体组成的一个预先设定的组。
+
IdFamily:'''<font color = '#ff8000'>家族family</font>'''标识符。家族是由相互认识的主体组成的一个预先设定的组。
    
# DE – Dependence level of the agent which mimics the need for help. Values [0,1]
 
# DE – Dependence level of the agent which mimics the need for help. Values [0,1]
第463行: 第465行:  
  DE – Dependence level of the agent which mimics the need for help. Values [0,1]
 
  DE – Dependence level of the agent which mimics the need for help. Values [0,1]
   −
De:主体的'''依赖水平Dependence level''',用来模拟主体对他人帮助的需求。取值范围:[0,1]
+
De:主体的'''<font color = '#ff8000'>依赖水平Dependence level</font>''',用来模拟主体对他人帮助的需求。取值范围:[0,1]
    
# AL – Altruism level representing the tendency to help other agents. Values [0,1]
 
# AL – Altruism level representing the tendency to help other agents. Values [0,1]
第469行: 第471行:  
  AL – Altruism level representing the tendency to help other agents. Values [0,1]
 
  AL – Altruism level representing the tendency to help other agents. Values [0,1]
   −
AL:'''利他主义水平Altruism Level''',代表了帮助他人的倾向。取值范围:[0,1]
+
AL:'''<font color = '#ff8000'>利他主义水平Altruism Level</font>''',代表了帮助他人的倾向。取值范围:[0,1]
    
# v<sub>i</sub> – Speed of the agent
 
# v<sub>i</sub> – Speed of the agent
第579行: 第581行:  
As described earlier, the Helbing Model is used as the basics for crowd behavior. This same type of behavior model is used for evacuation simulations.
 
As described earlier, the Helbing Model is used as the basics for crowd behavior. This same type of behavior model is used for evacuation simulations.
   −
如前所述,Helbing 模型被用作群体行为的基础。同样类型的行为模型也同样被用于疏散模拟。
+
如前所述,'''<font color = '#ff8000'>Helbing模型 Helbing Model</font>'''被用作群体行为的基础。同样类型的行为模型也同样被用于疏散模拟。
      第603行: 第605行:  
There were two types of searching algorithms tried out for this implementation. There was the random search and the depth first search. A random search is where each of the agents go in any direction through the environment and try to find a pathway out. The depth first search is where agents follow one path as far as it can go then return and try another path if the path they traversed does not contain an exit. If was found that depth first search gave a speed up of 15 times versus a random search.
 
There were two types of searching algorithms tried out for this implementation. There was the random search and the depth first search. A random search is where each of the agents go in any direction through the environment and try to find a pathway out. The depth first search is where agents follow one path as far as it can go then return and try another path if the path they traversed does not contain an exit. If was found that depth first search gave a speed up of 15 times versus a random search.
   −
有两种类型的搜索算法试验了这种模型:'''随机搜索 Random Search'''和'''深度优先搜索 Depth First Search'''。随机搜索是指每个主体在环境中朝任意方向前进,并试图找到一条出路。深度优先搜索是指主体尽可能沿着一条路径搜索,如果它们所经过的路径不包含出口则返回并尝试另一条路径。结果发现,深度优先搜索比随机搜索的速度快15倍(--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]])If was found 怀疑原文有误,应该是It was found)
+
有两种类型的搜索算法试验了这种模型:'''<font color = '#ff8000'>随机搜索 Random Search</font>'''和'''<font color = '#ff8000'>深度优先搜索 Depth First Search</font>'''。随机搜索是指每个主体在环境中朝任意方向前进,并试图找到一条出路。深度优先搜索是指主体尽可能沿着一条路径搜索,如果它们所经过的路径不包含出口则返回并尝试另一条路径。结果发现,深度优先搜索比随机搜索的速度快15倍(--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]])If was found 怀疑原文有误,应该是It was found)
    
=== Scalable simulations 可伸缩的模拟===
 
=== Scalable simulations 可伸缩的模拟===
 +
 +
--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) Scalable 翻译为“可变的”会不会好一点? 此处的搭配包括Scalable Agents,Scalable architecture 和Scalable simulations
    
There are many different case situations that come into play in crowd simulations.<ref>{{cite book |doi=10.1109/ICPP.2008.20 |chapter=A Scalable Architecture for Crowd Simulation: Implementing a Parallel Action Server |title=2008 37th International Conference on Parallel Processing |pages=430–7 |year=2008 |last1=Vigueras |first1=G. |last2=Lozano |first2=M. |last3=Pérez |first3=C. |last4=Orduña |first4=J.M. }}</ref> Recently, crowd simulation has been essential for the many virtual environment applications such as education, training, and entertainment.  Many situations are based on the environment of the simulation or the behavior of the group of local agents.  In virtual reality applications, every agent interacts with many other agents in the environment, calling for complex real-time interactions.  Agents must have continuous changes in the environment since agent behaviors allow complex interactions.  Scalable architecture can manage large crowds through the behavior and interactive rates.  These situations will indicate how the crowds will act in multiple complex scenarios while several different situations are being applied.  A situation can be any circumstance that has typical local behaviors.  We can categorize all situations into two different kinds.
 
There are many different case situations that come into play in crowd simulations.<ref>{{cite book |doi=10.1109/ICPP.2008.20 |chapter=A Scalable Architecture for Crowd Simulation: Implementing a Parallel Action Server |title=2008 37th International Conference on Parallel Processing |pages=430–7 |year=2008 |last1=Vigueras |first1=G. |last2=Lozano |first2=M. |last3=Pérez |first3=C. |last4=Orduña |first4=J.M. }}</ref> Recently, crowd simulation has been essential for the many virtual environment applications such as education, training, and entertainment.  Many situations are based on the environment of the simulation or the behavior of the group of local agents.  In virtual reality applications, every agent interacts with many other agents in the environment, calling for complex real-time interactions.  Agents must have continuous changes in the environment since agent behaviors allow complex interactions.  Scalable architecture can manage large crowds through the behavior and interactive rates.  These situations will indicate how the crowds will act in multiple complex scenarios while several different situations are being applied.  A situation can be any circumstance that has typical local behaviors.  We can categorize all situations into two different kinds.
第612行: 第616行:  
  In virtual reality applications, every agent interacts with many other agents in the environment, calling for complex real-time interactions.  Agents must have continuous changes in the environment since agent behaviors allow complex interactions.  Scalable architecture can manage large crowds through the behavior and interactive rates.  These situations will indicate how the crowds will act in multiple complex scenarios while several different situations are being applied.  A situation can be any circumstance that has typical local behaviors.  We can categorize all situations into two different kinds.
 
  In virtual reality applications, every agent interacts with many other agents in the environment, calling for complex real-time interactions.  Agents must have continuous changes in the environment since agent behaviors allow complex interactions.  Scalable architecture can manage large crowds through the behavior and interactive rates.  These situations will indicate how the crowds will act in multiple complex scenarios while several different situations are being applied.  A situation can be any circumstance that has typical local behaviors.  We can categorize all situations into two different kinds.
   −
在人群模拟中有许多不同的情况出现。近年来,人群模拟已经成为教育、训练、娱乐等虚拟环境应用中不可缺少的一部分。许多情况基于环境的模拟或一组局部主体的行为。在虚拟现实应用程序中,每个主体与环境中的许多其他主体进行交互,需要复杂的实时交互。由于主体行为允许复杂交互的特性,主体必须在环境中能够连续变化。'''可伸缩的架构Scalable architecture'''可以通过行为和交互速率来管理大的人群。这些情况将表明人群在多个复杂情境下将如何采取行动,而几个不同的情况正在被应用。情境可以是任何具有典型局部行为的环境。我们可以把所有的情境分为两种不同的类型。
+
在人群模拟中有许多不同的情况出现。近年来,人群模拟已经成为教育、训练、娱乐等虚拟环境应用中不可缺少的一部分。许多情况基于环境的模拟或一组局部主体的行为。在虚拟现实应用程序中,每个主体与环境中的许多其他主体进行交互,需要复杂的实时交互。由于主体行为允许复杂交互的特性,主体必须在环境中能够连续变化。'''<font color = '#ff8000'>可伸缩的架构Scalable architecture</font>'''可以通过行为和交互速率来管理大的人群。这些情况将表明人群在多个复杂情境下将如何采取行动,而几个不同的情况正在被应用。情境可以是任何具有典型局部行为的环境。我们可以把所有的情境分为两种不同的类型。
      第620行: 第624行:  
Spatial situation is a situation that has a region where the environment affects the local agents.  For instance, a crowd waiting in line for a ticket booth would be displaying a spatial situation. Other examples may be a bus stop or an ATM where characters act upon their environment.  Therefore, we would consider 'bus stop' as the situation if the behavior of the agents are to be getting on or off a bus.
 
Spatial situation is a situation that has a region where the environment affects the local agents.  For instance, a crowd waiting in line for a ticket booth would be displaying a spatial situation. Other examples may be a bus stop or an ATM where characters act upon their environment.  Therefore, we would consider 'bus stop' as the situation if the behavior of the agents are to be getting on or off a bus.
   −
'''空间情境Spatial Situation'''是指环境影响局部主体的区域。例如,一个售票亭前排队等候的人群就展示可一个空间情境。其他的例子,可能是一个公交车总站或者一个ATM机,在那里人依据其环境做出行动。因此,如果主体的行为可以是上车或下车,我们就可以把“公交车站”看作是一种空间情境。
+
'''<font color = '#ff8000'>空间情境Spatial Situation</font>'''是指环境影响局部主体的区域。例如,一个售票亭前排队等候的人群就展示可一个空间情境。其他的例子,可能是一个公交车总站或者一个ATM机,在那里人依据其环境做出行动。因此,如果主体的行为可以是上车或下车,我们就可以把“公交车站”看作是一种空间情境。
      第628行: 第632行:  
Non-Spatial situation has no region in the environment because this only involves the behavior of the crowd.  The relationship of the local agents is an important factor to consider when determining behavior.  An example would be a group of friends walking together.  Typical behavior of characters that are friends would all move along with each other. This means that 'friendship' would be the situation among the typical behavior of walking together.
 
Non-Spatial situation has no region in the environment because this only involves the behavior of the crowd.  The relationship of the local agents is an important factor to consider when determining behavior.  An example would be a group of friends walking together.  Typical behavior of characters that are friends would all move along with each other. This means that 'friendship' would be the situation among the typical behavior of walking together.
   −
'''非空间情境Non-Spatial situation'''是没有空间区域的环境,因为它只涉及到人群的行为。在决定行为时,局部主体之间的关系是一个重要的因素。一个例子是一群朋友一起散步。朋友的典型行为是各个主体都会互相影响。这意味着“友谊”是作为一起散步的典型行为的情境。
+
'''<font color = '#ff8000'>非空间情境Non-Spatial situation</font>'''是没有空间区域的环境,因为它只涉及到人群的行为。在决定行为时,局部主体之间的关系是一个重要的因素。一个例子是一群朋友一起散步。朋友的典型行为是各个主体都会互相影响。这意味着“友谊”是作为一起散步的典型行为的情境。
      第636行: 第640行:  
The structure of any situation is built upon four components, Behavior functions, Sensors, States, and Event Rules.  Behavior functions represent what the characters behaviors are specific to the situation.  Sensors are the sensing capability for agents to see and respond to events.  States are the different motions and state transitions used only for the local behaviors.  Event rule is the way to connect different events to their specific behaviors.  While a character is being put into a situation, these four components are considered at the same time.  For spatial situations,  the components are added when the individual initially enters the environment that influences the character.  For non-spatial situations, the character is affected only once the user assigns the situation to the character.  The four components are removed when the agent is taken away from its situations region or the situation itself is removed.  The dynamic adding and removing of the situations lets us achieve scalable agents.
 
The structure of any situation is built upon four components, Behavior functions, Sensors, States, and Event Rules.  Behavior functions represent what the characters behaviors are specific to the situation.  Sensors are the sensing capability for agents to see and respond to events.  States are the different motions and state transitions used only for the local behaviors.  Event rule is the way to connect different events to their specific behaviors.  While a character is being put into a situation, these four components are considered at the same time.  For spatial situations,  the components are added when the individual initially enters the environment that influences the character.  For non-spatial situations, the character is affected only once the user assigns the situation to the character.  The four components are removed when the agent is taken away from its situations region or the situation itself is removed.  The dynamic adding and removing of the situations lets us achieve scalable agents.
   −
任何情境的结构都建立在四个组件之上: '''行为函数Behavior Functions'''、'''传感器Sensors'''、'''状态States'''和'''事件规则Event Rules'''。行为函数表示特定情况下的特定行为。传感器是一种感知能力,可以让主体看到并对事件做出反应。状态是仅用于局部行为的不同运动和状态转移。事件规则是将不同的事件与其特定的行为联系起来的方法。当一个角色被置于一个情境中时,这四个组件将被同时考虑。对于空间情景,当个体最初进入影响角色的环境时就添加组件。对于非空间情境,只有当用户将情境赋给角色时,角色才会受到影响。当主体被带离情境区域或情境本身被移除时,这四个组件被移除。动态地添加和删除这些情境使我们能够实现'''可伸缩的主体Scalable Agents'''。
+
任何情境的结构都建立在四个组件之上: '''<font color = '#ff8000'>行为函数Behavior Functions</font>'''、'''<font color = '#ff8000'>传感器Sensors</font>'''、'''<font color = '#ff8000'>状态States</font>'''和'''<font color = '#ff8000'>事件规则Event Rules</font>'''。行为函数表示特定情况下的特定行为。传感器是一种感知能力,可以让主体看到并对事件做出反应。状态是仅用于局部行为的不同运动和状态转移。事件规则是将不同的事件与其特定的行为联系起来的方法。当一个角色被置于一个情境中时,这四个组件将被同时考虑。对于空间情景,当个体最初进入影响角色的环境时就添加组件。对于非空间情境,只有当用户将情境赋给角色时,角色才会受到影响。当主体被带离情境区域或情境本身被移除时,这四个组件被移除。动态地添加和删除这些情境使我们能够实现'''<font color = '#ff8000'>可伸缩的主体Scalable Agents</font>'''。
--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) Scalable 翻译为“可变的”会不会好一点? 此处的搭配包括Scalable Agents,Scalable architecture 和Scalable simulations
+
 
    
== Human-like behaviors and crowd AI 似人行为和群体人工智能==
 
== Human-like behaviors and crowd AI 似人行为和群体人工智能==
第661行: 第665行:  
Individual entities in a crowd are also called agents. In order for a crowd to behave realistically each agent should act autonomously (be capable of acting independently of the other agents). This idea is referred to as an agent-based model. Moreover, it is usually desired that the agents act with some degree of intelligence (i.e. the agents should not perform actions that would cause them to harm themselves). For agents to make intelligent and realistic decisions, they should act in accordance with their surrounding environment, react to its changes, and react to the other agents.
 
Individual entities in a crowd are also called agents. In order for a crowd to behave realistically each agent should act autonomously (be capable of acting independently of the other agents). This idea is referred to as an agent-based model. Moreover, it is usually desired that the agents act with some degree of intelligence (i.e. the agents should not perform actions that would cause them to harm themselves). For agents to make intelligent and realistic decisions, they should act in accordance with their surrounding environment, react to its changes, and react to the other agents.
   −
群体中的'''个体Individual Entities'''也称为'''主体 Agents'''。为了让一个群体真实地行动,每个主体应该自主地(能够独立于其他主体地)行动。这个想法被称为'''基于主体的模型Agent-based Model'''。此外,人们通常希望主体的行为具有一定程度的智慧(即,主体不应采取伤害自己的行动)。为了使主体做出明智和真实的决定,他们应该根据他们周围的环境采取行动,对环境变化作出反应,并对其他主体作出反应。
+
群体中的'''<font color = '#ff8000'>个体Individual Entities</font>'''也称为'''<font color = '#ff8000'>主体 Agents</font>'''。为了让一个群体真实地行动,每个主体应该自主地(能够独立于其他主体地)行动。这个想法被称为'''<font color = '#ff8000'>基于主体的模型Agent-based Model</font>'''。此外,人们通常希望主体的行为具有一定程度的智慧(即,主体不应采取伤害自己的行动)。为了使主体做出明智和真实的决定,他们应该根据他们周围的环境采取行动,对环境变化作出反应,并对其他主体作出反应。
      第677行: 第681行:  
In rule-based AI, virtual agents follow scripts: "if this happens, do that". This is a good approach to take if agents with different roles are required, such as a main character and several background characters. This type of AI is usually implemented with a hierarchy, such as in Maslow's hierarchy of needs, where the lower the need lies in the hierarchy, the stronger it is.
 
In rule-based AI, virtual agents follow scripts: "if this happens, do that". This is a good approach to take if agents with different roles are required, such as a main character and several background characters. This type of AI is usually implemented with a hierarchy, such as in Maslow's hierarchy of needs, where the lower the need lies in the hierarchy, the stronger it is.
   −
在'''基于规则的人工智能Rule-based AI'''中,虚拟主体遵循以下规则: “如果发生了这种情况,就那样做”。如果需要具有不同角色的主体,比如一个主角和几个背景角色,那么这是一个很好的方法。这种类型的人工智能通常是用层次结构来实现的,例如在马斯洛的需求层次结构中,需求层级越低,需求就越强。
+
在'''<font color = '#ff8000'>基于规则的人工智能Rule-based AI</font>'''中,虚拟主体遵循以下规则: “如果发生了这种情况,就那样做”。如果需要具有不同角色的主体,比如一个主角和几个背景角色,那么这是一个很好的方法。这种类型的人工智能通常是用层次结构来实现的,例如在马斯洛的需求层次结构中,需求层级越低,需求就越强。
      第685行: 第689行:  
For example, consider a student walking to class who encounters an explosion and runs away. The theory behind this is initially the first four levels of his needs are met, and the student is acting according to his need for self-actualization. When the explosion happens his safety is threatened which is a much stronger need, causing him to act according to that need.
 
For example, consider a student walking to class who encounters an explosion and runs away. The theory behind this is initially the first four levels of his needs are met, and the student is acting according to his need for self-actualization. When the explosion happens his safety is threatened which is a much stronger need, causing him to act according to that need.
   −
例如,假设一个学生在走向教室的路上遭遇了爆炸并逃跑了。这背后的理论是他的前4个层次的需求得到了满足,并且学生是具有'''自我实现self-actualization'''的需求并依次需求来行动。当爆炸发生时,他的安全受到威胁,这是一个比自我实现更强烈的需要,安全需求使他按照这种需要行事。
+
例如,假设一个学生在走向教室的路上遭遇了爆炸并逃跑了。这背后的理论是他的前4个层次的需求得到了满足,并且学生是具有'''<font color = '#ff8000'>自我实现self-actualization</font>'''的需求并依次需求来行动。当爆炸发生时,他的安全受到威胁,这是一个比自我实现更强烈的需要,安全需求使他按照这种需要行事。
      第703行: 第707行:  
In learning AI, virtual characters behave in ways that have been tested to help them achieve their goals.  Agents experiment with their environment or a sample environment which is similar to their real one.
 
In learning AI, virtual characters behave in ways that have been tested to help them achieve their goals.  Agents experiment with their environment or a sample environment which is similar to their real one.
   −
在'''学习型人工智能Learning AI''',虚拟角色以一种帮助他们实现自己的目标且经过了测试的方式行动。主体用他们的环境或者一个类似于他们真实环境的样本环境进行测试。
+
在'''<font color = '#ff8000'>学习型人工智能Learning AI</font>''',虚拟角色以一种帮助他们实现自己的目标且经过了测试的方式行动。主体用他们的环境或者一个类似于他们真实环境的样本环境进行测试。
      第739行: 第743行:  
Q-Learning是机器学习的一个子领域:强化学习中的一个算法。该算法的一个基本描述是:每个动作都被分配了一个Q值,每个主体都被赋予一个总是执行Q值最高的动作的指令。在这种情况下,学习效果取决于分配Q值的方式
 
Q-Learning是机器学习的一个子领域:强化学习中的一个算法。该算法的一个基本描述是:每个动作都被分配了一个Q值,每个主体都被赋予一个总是执行Q值最高的动作的指令。在这种情况下,学习效果取决于分配Q值的方式
 
(--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) learning applies to the way in which Q values are assigned 翻译为学习效果取决于分配 q 值的方式,不知是否正确)
 
(--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) learning applies to the way in which Q values are assigned 翻译为学习效果取决于分配 q 值的方式,不知是否正确)
,这完全是基于奖励的。当一个主体接触到一个状态 s 和一个动作 a 时,算法就会估计这个主体执行这个'''状态动作对state action pair'''所能得到的总回报值。在计算这些数据之后,它们被存储在主体的知识中,主体依据这些知识开始行动。
+
,这完全是基于奖励的。当一个主体接触到一个状态 s 和一个动作 a 时,算法就会估计这个主体执行这个'''<font color = '#ff8000'>状态动作对state action pair</font>'''所能得到的总回报值。在计算这些数据之后,它们被存储在主体的知识中,主体依据这些知识开始行动。
      第746行: 第750行:  
The agent will constantly alter its behavior depending on the best Q value available to it. And as it explores more and more of the environment, it will eventually learn the most optimal state action pairs to perform in almost every situation.
 
The agent will constantly alter its behavior depending on the best Q value available to it. And as it explores more and more of the environment, it will eventually learn the most optimal state action pairs to perform in almost every situation.
   −
主体将依赖最佳Q值不断地改变自己的行为。随着它对环境的探索越来越多,它最终将学习到几乎每种情况下最佳'''状态动作对state action pairs'''。
+
主体将依赖最佳Q值不断地改变自己的行为。随着它对环境的探索越来越多,它最终将学习到几乎每种情况下最佳'''<font color = '#ff8000'>状态动作对state action pairs</font>'''。
      第778行: 第782行:  
Rendering and animating a large number of agents realistically, especially in real time, is challenging. To reduce the complexity of 3D rendering of large-scale crowds, techniques like culling (discarding unimportant objects), impostors(image-based rendering) and decreasing levels of detail have been used.
 
Rendering and animating a large number of agents realistically, especially in real time, is challenging. To reduce the complexity of 3D rendering of large-scale crowds, techniques like culling (discarding unimportant objects), impostors(image-based rendering) and decreasing levels of detail have been used.
   −
对大量主体进行真实地、特别是实时地'''渲染Rendering'''和'''动画Animating''',是具有挑战性的。为了降低大规模人群3D渲染的复杂性,人们使用了'''剔除 Culling'''(舍弃不重要的物体)、'''顶替者 Impostors'''(基于图像的渲染)和降低细节的级别等技术。
+
对大量主体进行真实地、特别是实时地'''<font color = '#ff8000'>渲染Rendering</font>'''和'''<font color = '#ff8000'>动画Animating</font>''',是具有挑战性的。为了降低大规模人群3D渲染的复杂性,人们使用了'''<font color = '#ff8000'>剔除 Culling</font>'''(舍弃不重要的物体)、'''<font color = '#ff8000'>顶替者 Impostors</font>'''(基于图像的渲染)和降低细节的级别等技术。
    
Variations in appearance, body shape and size, accessories and behavior(social or cultural) exist in real crowds, and lack of variety affects the realism of visual simulations. Existing systems can create virtual crowds with varying texture,<ref name="Maim et al 2009"/> color,<ref>{{cite book |last1=Gosselin |first1=David R. |last2=Sander |first2=Pedro V. |last3=Mitchell |first3=Jason L. |chapter=Drawing a Crowd |editor1-first=Wolfgang |editor1-last=Engel |title=ShaderX3: Advanced Rendering Techniques in DirectX and OpenGL |publisher=Charles River Media |location=Cambridge, MA |year=2004 |pages=505–17 }}</ref> size, shape and animation.<ref name="Thalmann et al 2009"/>
 
Variations in appearance, body shape and size, accessories and behavior(social or cultural) exist in real crowds, and lack of variety affects the realism of visual simulations. Existing systems can create virtual crowds with varying texture,<ref name="Maim et al 2009"/> color,<ref>{{cite book |last1=Gosselin |first1=David R. |last2=Sander |first2=Pedro V. |last3=Mitchell |first3=Jason L. |chapter=Drawing a Crowd |editor1-first=Wolfgang |editor1-last=Engel |title=ShaderX3: Advanced Rendering Techniques in DirectX and OpenGL |publisher=Charles River Media |location=Cambridge, MA |year=2004 |pages=505–17 }}</ref> size, shape and animation.<ref name="Thalmann et al 2009"/>
第784行: 第788行:  
Variations in appearance, body shape and size, accessories and behavior(social or cultural) exist in real crowds, and lack of variety affects the realism of visual simulations. Existing systems can create virtual crowds with varying texture, size, shape and animation.
 
Variations in appearance, body shape and size, accessories and behavior(social or cultural) exist in real crowds, and lack of variety affects the realism of visual simulations. Existing systems can create virtual crowds with varying texture, size, shape and animation.
   −
真实的人群中存在着外貌、体型大小、'''附件Accessories'''和(社会的或文化的)行为的差异,缺乏多样性的模型会影响视觉模拟的真实性。现有的系统可以创建具有不同纹理、大小、形状和运动画面的虚拟人群。
+
真实的人群中存在着外貌、体型大小、'''<font color = '#ff8000'>附件Accessories</font>'''和(社会的或文化的)行为的差异,缺乏多样性的模型会影响视觉模拟的真实性。现有的系统可以创建具有不同纹理、大小、形状和运动画面的虚拟人群。
(--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) 最后一个animation译为运动画面了,个人感觉译为“动画”实在难以理解)
+
(--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) 最后一个animation译为运动画面了,译为“动画”呢?存疑)
    
== Real world applications 在真实世界的应用==
 
== Real world applications 在真实世界的应用==
第798行: 第802行:  
Such a number was unrealistic had they decided to only attempt to hire real actors and actresses. Instead they decided to use CG to simulate these scenes through the use of the Multiple Agent Simulation System in a Virtual Environment, otherwise known as MASSIVE. The Human Logic Engine based Maya plugin for crowd simulation, Miarmy, was used for the development of these sequences. The software allowed the filmmakers to provide each character model an agent based A.I. that could utilize a library of 350 animations. Based on sight, hearing, and touch parameters generated from the simulation, agents would react uniquely to each situation. Thus each simulation of the scene was unpredictable. The final product clearly displayed the advantages to using crowd simulation software.
 
Such a number was unrealistic had they decided to only attempt to hire real actors and actresses. Instead they decided to use CG to simulate these scenes through the use of the Multiple Agent Simulation System in a Virtual Environment, otherwise known as MASSIVE. The Human Logic Engine based Maya plugin for crowd simulation, Miarmy, was used for the development of these sequences. The software allowed the filmmakers to provide each character model an agent based A.I. that could utilize a library of 350 animations. Based on sight, hearing, and touch parameters generated from the simulation, agents would react uniquely to each situation. Thus each simulation of the scene was unpredictable. The final product clearly displayed the advantages to using crowd simulation software.
   −
人群模拟已经被广泛应用于电影中,它是一种相较雇佣演员和捕捉镜头来说更低成本高收益且现实的替代方式,否则使用其他方法将是不现实的。一个重要的例子就是电影《指环王》系列。最初,制作团队面临最突出的问题之一是大规模的战斗,因为小说的作者 '''托尔金J. R. R. Tolkien'''设想这些战斗至少有50,000名参与者。如果制作团队决定只雇佣真人演员,制作出这个数字的参与者人数是不现实的。相反,他们决定使用 CG ,虚拟环境中的多主体仿真系统,也就是众所周知的 MASSIVE 来模拟这些场景。Miarmy,一个基于'''人类逻辑引擎Human Logic Engine'''的人群模拟 Maya 插件,被用于开发这些动作序列。该软件允许制片人为每个角色提供一个基于主体的人工智能模型,这个模型可以利用一个有350个动画的数据库。基于通过模拟产生的视觉、听觉和触觉参数,主体将对每种情况分别做出反应。因此,每个场景的模拟都是不可预知的。最终,产品清晰地展示了使用人群模拟软件的优势。
+
人群模拟已经被广泛应用于电影中,它是一种相较雇佣演员和捕捉镜头来说更低成本高收益且现实的替代方式,否则使用其他方法将是不现实的。一个重要的例子就是电影《指环王》系列。最初,制作团队面临最突出的问题之一是大规模的战斗,因为小说的作者 '''<font color = '#ff8000'>托尔金J. R. R. Tolkien</font>'''设想这些战斗至少有50,000名参与者。如果制作团队决定只雇佣真人演员,制作出这个数字的参与者人数是不现实的。相反,他们决定使用 CG ,虚拟环境中的多主体仿真系统,也就是众所周知的 MASSIVE 来模拟这些场景。Miarmy,一个基于'''<font color = '#ff8000'>人类逻辑引擎Human Logic Engine</font>'''的人群模拟 Maya 插件,被用于开发这些动作序列。该软件允许制片人为每个角色提供一个基于主体的人工智能模型,这个模型可以利用一个有350个动画的数据库。基于通过模拟产生的视觉、听觉和触觉参数,主体将对每种情况分别做出反应。因此,每个场景的模拟都是不可预知的。最终,产品清晰地展示了使用人群模拟软件的优势。
    
<ref>http://people.ucalgary.ca/~far/Lectures/SENG697/PDF/tutorials/2002/Multiple_Agent_Simulation_System_in_a_Virtual_Environment.pdf Davis Guy. Multiple Agent Simulation System in a Virtual Environment.</ref>
 
<ref>http://people.ucalgary.ca/~far/Lectures/SENG697/PDF/tutorials/2002/Multiple_Agent_Simulation_System_in_a_Virtual_Environment.pdf Davis Guy. Multiple Agent Simulation System in a Virtual Environment.</ref>
第810行: 第814行:  
The development of crowd simulation software has become a modern and useful tool in designing urban environments. Whereas the traditional method of urban planning relies on maps and abstract sketches, a digital simulation is more capable of conveying both form and intent of design from architect to pedestrian. For example, street signs and traffic lights are localized visual cues that influence pedestrians to move and behave accordingly. Following this logic, a person is able to move from point A to point B in a way that is efficient and that a collective group of people can operate more effectively as a result. In a broader sense, bus systems and roadside restaurants serve a spatial purpose in their locations through an understanding of human movement patterns. The SimCity video game series exemplifies this concept in a more simplistic manner. In this series, the player assigns city development in designated zones while maintaining a healthy budget. The progression from empty land to a bustling city is fully controlled by the player's choices and the digital citizens behave as according to the city's design and events.
 
The development of crowd simulation software has become a modern and useful tool in designing urban environments. Whereas the traditional method of urban planning relies on maps and abstract sketches, a digital simulation is more capable of conveying both form and intent of design from architect to pedestrian. For example, street signs and traffic lights are localized visual cues that influence pedestrians to move and behave accordingly. Following this logic, a person is able to move from point A to point B in a way that is efficient and that a collective group of people can operate more effectively as a result. In a broader sense, bus systems and roadside restaurants serve a spatial purpose in their locations through an understanding of human movement patterns. The SimCity video game series exemplifies this concept in a more simplistic manner. In this series, the player assigns city development in designated zones while maintaining a healthy budget. The progression from empty land to a bustling city is fully controlled by the player's choices and the digital citizens behave as according to the city's design and events.
   −
人群模拟软件的发展为现代城市环境设计提供了一个有用的工具。传统的城市规划方法依赖于地图和抽象的草图,而数字仿真更能将设计的形式和意图从建筑设计师传达给行人。例如,街道标志和交通灯是局部视觉线索,能够影响行人的移动和相应的行为。按照这个逻辑,如果一个人能够以一种高效的方式从 a 点移动到 b 点,这个群体就能够高效地运作。在更广泛的意义上,通过对人类运动模式的理解,公交系统和路边餐馆在其位置服务于一个'''空间目的 Spatial Purpose'''。'''模拟城市SimCity'''视频游戏系列以一种更简单的方式举例说明了这个概念。在这个系列中,玩家在指定的区域指导城市的发展,同时保持平衡的收支。从空地到繁华城市的过程完全由玩家的选择来控制,而数字市民的行为则根据城市的设计和事件而定。
+
人群模拟软件的发展为现代城市环境设计提供了一个有用的工具。传统的城市规划方法依赖于地图和抽象的草图,而数字仿真更能将设计的形式和意图从建筑设计师传达给行人。例如,街道标志和交通灯是局部视觉线索,能够影响行人的移动和相应的行为。按照这个逻辑,如果一个人能够以一种高效的方式从 a 点移动到 b 点,这个群体就能够高效地运作。在更广泛的意义上,通过对人类运动模式的理解,公交系统和路边餐馆在其位置服务于一个'''<font color = '#ff8000'>空间目的 Spatial Purpose</font>'''。'''<font color = '#ff8000'>模拟城市SimCity</font>'''视频游戏系列以一种更简单的方式举例说明了这个概念。在这个系列中,玩家在指定的区域指导城市的发展,同时保持平衡的收支。从空地到繁华城市的过程完全由玩家的选择来控制,而数字市民的行为则根据城市的设计和事件而定。
      第820行: 第824行:  
Simulated realistic crowds can be used in training for riots handling, architecture, safety science (evacuation planning).
 
Simulated realistic crowds can be used in training for riots handling, architecture, safety science (evacuation planning).
   −
模拟真实的人群可用于训练'''暴乱处理Riots Handling'''、'''建筑 Architecture'''、'''安全科学 Safety Science'''('''疏散计划 Evacuation Planning''')。
+
模拟真实的人群可用于训练'''<font color = '#ff8000'>暴乱处理Riots Handling</font>'''、'''<font color = '#ff8000'>建筑 Architecture</font>'''、'''<font color = '#ff8000'>安全科学 Safety Science</font>'''('''<font color = '#ff8000'>疏散计划 Evacuation Planning</font>''')。
     
259

个编辑