第425行: |
第425行: |
| | | |
| ==Closeness centrality== | | ==Closeness centrality== |
− | | + | =='''<font color="#ff8000"> 紧密中心性Closeness centrality</font>'''== |
| {{Main|Closeness centrality}}In a [[Connected component (graph theory)|connected]] [[Graph (discrete mathematics)|graph]], the [[Normalization (statistics)|normalized]] '''closeness centrality''' (or '''closeness''') of a node is the average length of the [[Shortest path problem|shortest path]] between the node and all other nodes in the graph. Thus the more central a node is, the closer it is to all other nodes. | | {{Main|Closeness centrality}}In a [[Connected component (graph theory)|connected]] [[Graph (discrete mathematics)|graph]], the [[Normalization (statistics)|normalized]] '''closeness centrality''' (or '''closeness''') of a node is the average length of the [[Shortest path problem|shortest path]] between the node and all other nodes in the graph. Thus the more central a node is, the closer it is to all other nodes. |
| | | |
| In a connected graph, the normalized closeness centrality (or closeness) of a node is the average length of the shortest path between the node and all other nodes in the graph. Thus the more central a node is, the closer it is to all other nodes. | | In a connected graph, the normalized closeness centrality (or closeness) of a node is the average length of the shortest path between the node and all other nodes in the graph. Thus the more central a node is, the closer it is to all other nodes. |
| | | |
− | 在连通图中,节点的归一化贴近中心性(或贴近性)是节点与图中所有其他节点之间最短路径的平均长度。因此,一个节点越是中心,它就越接近所有其他节点。
| + | 在连通图中,节点的标准'''<font color="#ff8000"> 紧密中心性Closeness centrality</font>'''(或贴近性)是节点与图中所有其他节点之间最短路径的平均长度。因此,一个节点越是中心,它就越接近所有其他节点。 |
| | | |
| | | |
第454行: |
第454行: |
| where <math>d(y,x)</math> is the distance between vertices <math>x</math> and <math>y</math>. However, when speaking of closeness centrality, people usually refer to its normalized form, generally given by the previous formula multiplied by <math>N-1</math>, where <math>N</math> is the number of nodes in the graph. This adjustment allows comparisons between nodes of graphs of different sizes. | | where <math>d(y,x)</math> is the distance between vertices <math>x</math> and <math>y</math>. However, when speaking of closeness centrality, people usually refer to its normalized form, generally given by the previous formula multiplied by <math>N-1</math>, where <math>N</math> is the number of nodes in the graph. This adjustment allows comparisons between nodes of graphs of different sizes. |
| | | |
− | 其中 < math > d (y,x) </math > 是顶点 < math > x </math > 和 < math > y </math > 之间的距离。然而,当谈到亲密中心性时,人们通常会提到它的规范化形式,一般是以前的公式乘以 < math > N-1 </math > ,其中 < math > n </math > 是图中的节点数。这种调整允许比较不同大小图形的节点。 | + | 其中 < math > d (y,x) </math > 是顶点 < math > x </math > 和 < math > y </math > 之间的距离。然而,当谈到'''<font color="#ff8000"> 紧密中心性Closeness centrality</font>'''时,人们通常会提到它的标准化形式,一般是以前的公式乘以 < math > N-1 </math > ,其中 < math > n </math > 是图中的节点数。这种调整允许比较不同大小图形的节点。 |
| | | |
| | | |
第462行: |
第462行: |
| Taking distances from or to all other nodes is irrelevant in undirected graphs, whereas it can produce totally different results in directed graphs (e.g. a website can have a high closeness centrality from outgoing link, but low closeness centrality from incoming links). | | Taking distances from or to all other nodes is irrelevant in undirected graphs, whereas it can produce totally different results in directed graphs (e.g. a website can have a high closeness centrality from outgoing link, but low closeness centrality from incoming links). |
| | | |
− | 从所有其他节点或到所有其他节点的距离在无向图中是不相关的,但是在有向图中可能产生完全不同的结果(例如:一个网站可以从传出链接获得高度的亲密度中心性,而从传入链接获得的亲密度中心性低)。
| + | 从所有其他节点或到所有其他节点的距离在'''<font color="#ff8000"> 无向图Undirected graphs</font>'''中是不相关的,但是在'''<font color="#ff8000"> 有向图Directed graphs</font>'''中可能产生完全不同的结果(例如:一个网站可以从传出链接获得高的'''<font color="#ff8000"> 紧密中心性Closeness centrality</font>''',而从传入链接获得低的'''<font color="#ff8000"> 紧密中心性Closeness centrality</font>''')。 |
| | | |
| | | |
| | | |
| ===Harmonic centrality=== | | ===Harmonic centrality=== |
| + | =='''<font color="#ff8000"> 调和中心性Harmonic centrality</font>'''== |
| | | |
| In a (not necessarily connected) graph, the '''harmonic centrality''' reverses the sum and reciprocal operations in the definition of closeness centrality: | | In a (not necessarily connected) graph, the '''harmonic centrality''' reverses the sum and reciprocal operations in the definition of closeness centrality: |
第472行: |
第473行: |
| In a (not necessarily connected) graph, the harmonic centrality reverses the sum and reciprocal operations in the definition of closeness centrality: | | In a (not necessarily connected) graph, the harmonic centrality reverses the sum and reciprocal operations in the definition of closeness centrality: |
| | | |
− | 在一个(不一定是连通的)图中,调和中心性反转了封闭中心性定义中的和互反运算: | + | 在一个(不一定是连通的)图中,'''<font color="#ff8000"> 调和中心性Harmonic centrality</font>'''反转了'''<font color="#ff8000"> 紧密中心性Closeness centrality</font>'''定义中的和互反运算: |
| | | |
| | | |
第497行: |
第498行: |
| | | |
| 调和中心性是由 Marchiori 和 Latora (2000)提出的,然后是 Dekker (2005)独立提出的,使用的名称是“有价值的中心性” ,Rochat (2009)。 | | 调和中心性是由 Marchiori 和 Latora (2000)提出的,然后是 Dekker (2005)独立提出的,使用的名称是“有价值的中心性” ,Rochat (2009)。 |
− |
| |
− |
| |
| | | |
| ==Betweenness centrality== | | ==Betweenness centrality== |