On an intuitive level, the idea is that the factorization of the joint distribution P(Cause, Effect) into P(Cause)*P(Effect | Cause) typically yields models of lower total complexity than the factorization into P(Effect)*P(Cause | Effect). Although the notion of “complexity” is intuitively appealing, it is not obvious how it should be precisely defined.<ref name="Mooij"/> A different family of methods attempt to discover causal "footprints" from large amounts of labeled data, and allow the prediction of more flexible causal relations.<ref>Lopez-Paz, David, et al. "[http://www.jmlr.org/proceedings/papers/v37/lopez-paz15.pdf Towards a learning theory of cause-effect inference]" ICML. 2015</ref> | On an intuitive level, the idea is that the factorization of the joint distribution P(Cause, Effect) into P(Cause)*P(Effect | Cause) typically yields models of lower total complexity than the factorization into P(Effect)*P(Cause | Effect). Although the notion of “complexity” is intuitively appealing, it is not obvious how it should be precisely defined.<ref name="Mooij"/> A different family of methods attempt to discover causal "footprints" from large amounts of labeled data, and allow the prediction of more flexible causal relations.<ref>Lopez-Paz, David, et al. "[http://www.jmlr.org/proceedings/papers/v37/lopez-paz15.pdf Towards a learning theory of cause-effect inference]" ICML. 2015</ref> |