第49行: |
第49行: |
| A maximum clique of a graph, G, is a clique, such that there is no clique with more vertices. Moreover, the clique number ω(G) of a graph G is the number of vertices in a maximum clique in G. | | A maximum clique of a graph, G, is a clique, such that there is no clique with more vertices. Moreover, the clique number ω(G) of a graph G is the number of vertices in a maximum clique in G. |
| | | |
− | 图G中同样存在一个最大团,使得其不存在更多顶点。另外,图G的团数ω(G)是该图最大团的顶点数。
| + | 图G中同样存在一个'''<font color="#ff8000"> 最大团Maximum clique</font>''',使得其不存在更多顶点。另外,图G的团数''ω(G)''是该图最大团的顶点数。 |
| | | |
| | | |
第57行: |
第57行: |
| The intersection number of G is the smallest number of cliques that together cover all edges of G. | | The intersection number of G is the smallest number of cliques that together cover all edges of G. |
| | | |
− | 图G的交叉数是该图中能覆盖所有连边的最少团数。
| + | 图G的'''<font color="#ff8000"> 交叉数Intersection number</font>'''是该图中能覆盖所有连边的最少团数。 |
| | | |
| | | |
第73行: |
第73行: |
| A maximum clique transversal of a graph is a subset of vertices with the property that each maximum clique of the graph contains at least one vertex in the subset. | | A maximum clique transversal of a graph is a subset of vertices with the property that each maximum clique of the graph contains at least one vertex in the subset. |
| | | |
− | 一个图的最大团横贯集是其顶点的子集,其属性为该图的每个最大团中至少有一个顶点在最大团横贯集中。
| + | 一个图的'''<font color="#ff8000"> 最大团横贯集Maximum clique transversal</font>'''是其顶点的子集,其属性为该图的每个最大团中至少有一个顶点在最大团横贯集中。 |
| | | |
| | | |
第81行: |
第81行: |
| The opposite of a clique is an independent set, in the sense that every clique corresponds to an independent set in the complement graph. The clique cover problem concerns finding as few cliques as possible that include every vertex in the graph. | | The opposite of a clique is an independent set, in the sense that every clique corresponds to an independent set in the complement graph. The clique cover problem concerns finding as few cliques as possible that include every vertex in the graph. |
| | | |
− | 作为团的对立面,独立集的存在是指图中两两互相不相邻的顶点集合。因此,每一个团都对应于补图中的独立集。集团覆盖问题涉及到寻找尽可能少的团,其中就包括图中的每个顶点。
| + | 作为团的对立面,'''<font color="#ff8000"> 独立集Independent set</font>'''的存在是指图中两两互相不相邻的顶点集合。因此,每一个团都对应于补图中的独立集。集团覆盖问题涉及到寻找尽可能少的团,其中就包括图中的每个顶点。 |
| | | |
| | | |
第89行: |
第89行: |
| A related concept is a biclique, a complete bipartite subgraph. The bipartite dimension of a graph is the minimum number of bicliques needed to cover all the edges of the graph. | | A related concept is a biclique, a complete bipartite subgraph. The bipartite dimension of a graph is the minimum number of bicliques needed to cover all the edges of the graph. |
| | | |
− | 二元团是团的相关概念,指的是一个完全二分图。该图的二分维度指的是覆盖该图所有连边的最少二元团数。
| + | '''<font color="#ff8000"> 二元团biclique</font>'''是团的相关概念,指的是一个完全二分图。该图的二分维度指的是覆盖该图所有连边的最少二元团数。 |
− | | |
− | | |
| | | |
| == Mathematics 数学运算== | | == Mathematics 数学运算== |