第33行: |
第33行: |
| A clique, C, in an undirected graph (V, E)}} is a subset of the vertices, , such that every two distinct vertices are adjacent. This is equivalent to the condition that the induced subgraph of G induced by C is a complete graph. In some cases, the term clique may also refer to the subgraph directly. | | A clique, C, in an undirected graph (V, E)}} is a subset of the vertices, , such that every two distinct vertices are adjacent. This is equivalent to the condition that the induced subgraph of G induced by C is a complete graph. In some cases, the term clique may also refer to the subgraph directly. |
| | | |
− | 在一个无向图''G =(V,E)''中,团C是顶点V的子集,记作:''C⊆V'',使得每两个不同的顶点相邻。因此团C可以看作是该无向图G的导出子集,进而将此过程视为由C引导出的完全子集的成立条件。在某些情况下,“团”这一术语也可以直接被引用为子集。 | + | 在一个无向图''G =(V,E)''中,团''C''是顶点''V''的子集,记作:''C⊆V'',使得每两个不同的顶点相邻。因此团''C''可以看作是该无向图''G''的导出子集,进而将此过程视为由''C''引导出的完全子集的成立条件。在某些情况下,“团”这一术语也可以直接被引用为子集。 |
| | | |
| | | |
第49行: |
第49行: |
| A maximum clique of a graph, G, is a clique, such that there is no clique with more vertices. Moreover, the clique number ω(G) of a graph G is the number of vertices in a maximum clique in G. | | A maximum clique of a graph, G, is a clique, such that there is no clique with more vertices. Moreover, the clique number ω(G) of a graph G is the number of vertices in a maximum clique in G. |
| | | |
− | 图G中同样存在一个'''<font color="#ff8000"> 最大团Maximum clique</font>''',使得其不存在更多顶点。另外,图G的团数''ω(G)''是该图最大团的顶点数。
| + | 图''G''中同样存在一个'''<font color="#ff8000"> 最大团Maximum clique</font>''',使得其不存在更多顶点。另外,图''G''的团数''ω(G)''是该图最大团的顶点数。 |
| | | |
| | | |
第57行: |
第57行: |
| The intersection number of G is the smallest number of cliques that together cover all edges of G. | | The intersection number of G is the smallest number of cliques that together cover all edges of G. |
| | | |
− | 图G的'''<font color="#ff8000"> 交叉数Intersection number</font>'''是该图中能覆盖所有连边的最少团数。
| + | 图''G''的'''<font color="#ff8000"> 交叉数Intersection number</font>'''是该图中能覆盖所有连边的最少团数。 |
| | | |
| | | |
第65行: |
第65行: |
| The clique cover number of a graph G is the smallest number of cliques of G whose union covers the set of vertices V of the graph. | | The clique cover number of a graph G is the smallest number of cliques of G whose union covers the set of vertices V of the graph. |
| | | |
− | 图G的'''<font color="#ff8000"> 团覆盖数Clique cover number</font>'''是G的团覆盖图的顶点集V的团的最小个数。
| + | 图''G''的'''<font color="#ff8000"> 团覆盖数Clique cover number</font>'''是''G''的团覆盖图中顶点集''V''的团的最小个数。 |
| | | |
| | | |