更改

删除6字节 、 2020年8月26日 (三) 11:20
第336行: 第336行:  
An important example is a finite geometry. For instance, in a finite plane, X is the set of points and Y is the set of lines. In a finite geometry of higher dimension, X could be the set of points and Y could be the set of subspaces of dimension one less than the dimension of the entire space (hyperplanes); or, more generally, X could be the set of all subspaces of one dimension d and Y the set of all subspaces of another dimension e, with incidence defined as containment.
 
An important example is a finite geometry. For instance, in a finite plane, X is the set of points and Y is the set of lines. In a finite geometry of higher dimension, X could be the set of points and Y could be the set of subspaces of dimension one less than the dimension of the entire space (hyperplanes); or, more generally, X could be the set of all subspaces of one dimension d and Y the set of all subspaces of another dimension e, with incidence defined as containment.
   −
一个有限几何的重要例子。例如,在有限平面中, ''X'' 是点的集合, ''Y'' 是线的集合。在高维有限几何中, ''X'' 可以是点的集合, ''Y'' 可以是低于整个空间维数的一维子空间(超平面)的集合; 或者,更一般地, ''X'' 可以是一维子空间 ''d'' 的所有子空间的集合, ''Y'' 可以是另一维子空间 ''e'' 的所有子空间的集合,关联度定义也包含在内。
+
一个有限几何的重要例子。例如,在有限平面中,''X'' 是点的集合,''Y'' 是线的集合。在高维有限几何中,''X'' 可以是点的集合,''Y'' 可以是低于整个空间维数的一维子空间(超平面)的集合; 或者,更一般地,''X'' 可以是一维子空间 ''d'' 的所有子空间的集合,''Y'' 可以是另一维子空间 ''e'' 的所有子空间的集合,关联度定义也包含在内。
    
==Polytopes==
 
==Polytopes==
274

个编辑