更改

删除20字节 、 2020年8月28日 (五) 15:07
第95行: 第95行:  
* 对于非常小的微观系统,可以通过简单地列举系统所有可能状态(利用量子力学中的严格对角化,或者经典力学中对所有相空间积分)来直接得到系综。
 
* 对于非常小的微观系统,可以通过简单地列举系统所有可能状态(利用量子力学中的严格对角化,或者经典力学中对所有相空间积分)来直接得到系综。
   −
* 对于包含很多分离的微观系统的宏观系统,每个子系统可以单独分析。尤其是粒子间无相互作用的理想气体具有这种性质,从而可以精确地得到麦克斯韦–玻尔兹曼统计,费米-狄拉克统计,和波色-爱因斯坦统计。<ref name="tolman"/>
+
* 对于包含很多分离的微观系统的宏观系统,每个子系统可以单独分析。尤其是粒子间无相互作用的理想气体具有这种性质,从而可以精确地得到麦克斯韦–玻尔兹曼统计,费米-狄拉克统计,和波色-爱因斯坦统计。
    
* 某些存在相互作用的宏观系统也存在精确解。通过运用微妙的数学技巧,已经找到了几个玩具模型的精确解。<ref>{{cite book | isbn = 9780120831807 | title = Exactly solved models in statistical mechanics | last1 = Baxter | first1 = Rodney J. | year = 1982 | publisher = Academic Press Inc.  | pages =  }}</ref> 一些例子包括,零场下的二维格点伊辛模型硬六边形模型。
 
* 某些存在相互作用的宏观系统也存在精确解。通过运用微妙的数学技巧,已经找到了几个玩具模型的精确解。<ref>{{cite book | isbn = 9780120831807 | title = Exactly solved models in statistical mechanics | last1 = Baxter | first1 = Rodney J. | year = 1982 | publisher = Academic Press Inc.  | pages =  }}</ref> 一些例子包括,零场下的二维格点伊辛模型硬六边形模型。
863

个编辑