The investigations are frequently combined with large-scale perturbation methods, including gene-based ([[RNAi]], mis-expression of [[wild type]] and mutant genes) and chemical approaches using small molecule libraries.{{Citation needed|date=May 2009}} [[Robot]]s and automated sensors enable such large-scale experimentation and data acquisition. These technologies are still emerging and many face problems that the larger the quantity of data produced, the lower the quality.{{Citation needed|date=May 2009}} A wide variety of quantitative scientists ([[computational biology|computational biologists]], [[statistician]]s, [[mathematician]]s, [[computer scientist]]s and [[physicist]]s) are working to improve the quality of these approaches and to create, refine, and retest the models to accurately reflect observations. | The investigations are frequently combined with large-scale perturbation methods, including gene-based ([[RNAi]], mis-expression of [[wild type]] and mutant genes) and chemical approaches using small molecule libraries.{{Citation needed|date=May 2009}} [[Robot]]s and automated sensors enable such large-scale experimentation and data acquisition. These technologies are still emerging and many face problems that the larger the quantity of data produced, the lower the quality.{{Citation needed|date=May 2009}} A wide variety of quantitative scientists ([[computational biology|computational biologists]], [[statistician]]s, [[mathematician]]s, [[computer scientist]]s and [[physicist]]s) are working to improve the quality of these approaches and to create, refine, and retest the models to accurately reflect observations. |