更改

添加726字节 、 2020年9月12日 (六) 09:28
第449行: 第449行:     
  1    ''get a positive integer n from input''
 
  1    ''get a positive integer n from input''
   
  2    '''if''' n > 10
 
  2    '''if''' n > 10
   
  3        '''print''' "This might take a while..."
 
  3        '''print''' "This might take a while..."
   
  4    '''for''' i = 1 '''to''' n
 
  4    '''for''' i = 1 '''to''' n
   
  5        '''for''' j = 1 '''to''' i
 
  5        '''for''' j = 1 '''to''' i
   
  6            '''print''' i * j
 
  6            '''print''' i * j
   
  7    '''print''' "Done!"
 
  7    '''print''' "Done!"
        第589行: 第582行:     
As a rule-of-thumb, one can assume that the highest-order term in any given function dominates its rate of growth and thus defines its run-time order.  In this example, n<sup>2</sup> is the highest-order term, so one can conclude that f(n) = O(n<sup>2</sup>).  Formally this can be proven as follows:
 
As a rule-of-thumb, one can assume that the highest-order term in any given function dominates its rate of growth and thus defines its run-time order.  In this example, n<sup>2</sup> is the highest-order term, so one can conclude that f(n) = O(n<sup>2</sup>).  Formally this can be proven as follows:
  −
作为一个经验法则,我们可以假设任何给定函数中的最高阶项主导了它的增长率,从而定义了它的运行时序。在这个例子中,n sup 2 / sup 是最高阶项,因此可以得出 f (n) o (n sup 2 / sup)。在形式上,这可以证明如下:
      
根据'''<font color="#ff8000">经验法则 Rule-of-thumb</font>''',我们可以假设任意给定函数中的最高阶项主导其增长率,从而定义其运行时顺序。在这个例子中,最高阶项为n<sup>2</sup>,因此可以得出f(n) = O(n<sup>2</sup>)。证明如下:
 
根据'''<font color="#ff8000">经验法则 Rule-of-thumb</font>''',我们可以假设任意给定函数中的最高阶项主导其增长率,从而定义其运行时顺序。在这个例子中,最高阶项为n<sup>2</sup>,因此可以得出f(n) = O(n<sup>2</sup>)。证明如下:
第626行: 第617行:     
}}
 
}}
 +
 +
 +
{{quote|Prove that <math>\left[ \frac{1}{2} (n^2 + n) \right] T_6 + \left[ \frac{1}{2} (n^2 + 3n) \right] T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \le cn^2,\ n \ge n_0</math>
 +
<br /><br />
 +
<math>\begin{align}
 +
&\left[ \frac{1}{2} (n^2 + n) \right] T_6 + \left[ \frac{1}{2} (n^2 + 3n) \right] T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7\\
 +
\le &( n^2 + n )T_6 + ( n^2 + 3n )T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \ (\text{for } n \ge 0 )
 +
\end{align}</math>
 +
<br /><br />
 +
Let ''k'' be a constant greater than or equal to [''T''<sub>1</sub>..''T''<sub>7</sub>]
 +
<br /><br />
 +
<math>\begin{align}
 +
&T_6( n^2 + n ) + T_5( n^2 + 3n ) + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \le k( n^2 + n ) + k( n^2 + 3n ) + kn + 5k\\
 +
= &2kn^2 + 5kn + 5k \le 2kn^2 + 5kn^2 + 5kn^2 \ (\text{for } n \ge 1) = 12kn^2
 +
\end{align}</math>
 +
<br /><br />
 +
Therefore <math>\left[ \frac{1}{2} (n^2 + n) \right] T_6 + \left[ \frac{1}{2} (n^2 + 3n) \right] T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \le cn^2, n \ge n_0 \text{ for } c = 12k, n_0 = 1</math>
 +
}}
 +
     
463

个编辑