第449行: |
第449行: |
| | | |
| 1 ''get a positive integer n from input'' | | 1 ''get a positive integer n from input'' |
− |
| |
| 2 '''if''' n > 10 | | 2 '''if''' n > 10 |
− |
| |
| 3 '''print''' "This might take a while..." | | 3 '''print''' "This might take a while..." |
− |
| |
| 4 '''for''' i = 1 '''to''' n | | 4 '''for''' i = 1 '''to''' n |
− |
| |
| 5 '''for''' j = 1 '''to''' i | | 5 '''for''' j = 1 '''to''' i |
− |
| |
| 6 '''print''' i * j | | 6 '''print''' i * j |
− |
| |
| 7 '''print''' "Done!" | | 7 '''print''' "Done!" |
− |
| |
| | | |
| | | |
第589行: |
第582行: |
| | | |
| As a rule-of-thumb, one can assume that the highest-order term in any given function dominates its rate of growth and thus defines its run-time order. In this example, n<sup>2</sup> is the highest-order term, so one can conclude that f(n) = O(n<sup>2</sup>). Formally this can be proven as follows: | | As a rule-of-thumb, one can assume that the highest-order term in any given function dominates its rate of growth and thus defines its run-time order. In this example, n<sup>2</sup> is the highest-order term, so one can conclude that f(n) = O(n<sup>2</sup>). Formally this can be proven as follows: |
− |
| |
− | 作为一个经验法则,我们可以假设任何给定函数中的最高阶项主导了它的增长率,从而定义了它的运行时序。在这个例子中,n sup 2 / sup 是最高阶项,因此可以得出 f (n) o (n sup 2 / sup)。在形式上,这可以证明如下:
| |
| | | |
| 根据'''<font color="#ff8000">经验法则 Rule-of-thumb</font>''',我们可以假设任意给定函数中的最高阶项主导其增长率,从而定义其运行时顺序。在这个例子中,最高阶项为n<sup>2</sup>,因此可以得出f(n) = O(n<sup>2</sup>)。证明如下: | | 根据'''<font color="#ff8000">经验法则 Rule-of-thumb</font>''',我们可以假设任意给定函数中的最高阶项主导其增长率,从而定义其运行时顺序。在这个例子中,最高阶项为n<sup>2</sup>,因此可以得出f(n) = O(n<sup>2</sup>)。证明如下: |
第626行: |
第617行: |
| | | |
| }} | | }} |
| + | |
| + | |
| + | {{quote|Prove that <math>\left[ \frac{1}{2} (n^2 + n) \right] T_6 + \left[ \frac{1}{2} (n^2 + 3n) \right] T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \le cn^2,\ n \ge n_0</math> |
| + | <br /><br /> |
| + | <math>\begin{align} |
| + | &\left[ \frac{1}{2} (n^2 + n) \right] T_6 + \left[ \frac{1}{2} (n^2 + 3n) \right] T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7\\ |
| + | \le &( n^2 + n )T_6 + ( n^2 + 3n )T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \ (\text{for } n \ge 0 ) |
| + | \end{align}</math> |
| + | <br /><br /> |
| + | Let ''k'' be a constant greater than or equal to [''T''<sub>1</sub>..''T''<sub>7</sub>] |
| + | <br /><br /> |
| + | <math>\begin{align} |
| + | &T_6( n^2 + n ) + T_5( n^2 + 3n ) + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \le k( n^2 + n ) + k( n^2 + 3n ) + kn + 5k\\ |
| + | = &2kn^2 + 5kn + 5k \le 2kn^2 + 5kn^2 + 5kn^2 \ (\text{for } n \ge 1) = 12kn^2 |
| + | \end{align}</math> |
| + | <br /><br /> |
| + | Therefore <math>\left[ \frac{1}{2} (n^2 + n) \right] T_6 + \left[ \frac{1}{2} (n^2 + 3n) \right] T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \le cn^2, n \ge n_0 \text{ for } c = 12k, n_0 = 1</math> |
| + | }} |
| + | |
| | | |
| | | |