For large data linear or quadratic factors cannot be ignored, but for small data an asymptotically inefficient algorithm may be more efficient. This is particularly used in hybrid algorithms, like Timsort, which use an asymptotically efficient algorithm (here merge sort, with time complexity <math>n \log n</math>), but switch to an asymptotically inefficient algorithm (here insertion sort, with time complexity <math>n^2</math>) for small data, as the simpler algorithm is faster on small data. | For large data linear or quadratic factors cannot be ignored, but for small data an asymptotically inefficient algorithm may be more efficient. This is particularly used in hybrid algorithms, like Timsort, which use an asymptotically efficient algorithm (here merge sort, with time complexity <math>n \log n</math>), but switch to an asymptotically inefficient algorithm (here insertion sort, with time complexity <math>n^2</math>) for small data, as the simpler algorithm is faster on small data. |