第64行: |
第64行: |
| To define probability distributions for the simplest cases, it is necessary to distinguish between discrete and continuous random variables. In the discrete case, it is sufficient to specify a probability mass function p assigning a probability to each possible outcome: for example, when throwing a fair die, each of the six values 1 to 6 has the probability 1/6. The probability of an event is then defined to be the sum of the probabilities of the outcomes that satisfy the event; for example, the probability of the event "the dice rolls an even value" is | | To define probability distributions for the simplest cases, it is necessary to distinguish between discrete and continuous random variables. In the discrete case, it is sufficient to specify a probability mass function p assigning a probability to each possible outcome: for example, when throwing a fair die, each of the six values 1 to 6 has the probability 1/6. The probability of an event is then defined to be the sum of the probabilities of the outcomes that satisfy the event; for example, the probability of the event "the dice rolls an even value" is |
| | | |
− | 为了定义最简单的概率分布,有必要区分离散和连续的随机变量。在离散情况下,指定一个'''<font color="#ff8000">概率质量函数 Probability Mass Function</font>'''p 就足够了,它为每个可能的结果赋予一个概率: 例如,当投掷一个骰子时,6个值中的每一个的概率为1/6。然后将事件的概率定义为满足事件的结果的概率之和; 例如,事件”骰子掷出偶数值”的概率是 | + | 为了定义最简单的概率分布,有必要区分离散和连续的随机变量。在离散情况下,指定一个'''<font color="#ff8000">概率质量函数 Probability Mass Function</font>''' P就足够了,它为每个可能的结果赋予一个概率: 例如,当投掷一个骰子时,6个值中的每一个的概率为1/6。然后将事件的概率定义为满足事件的结果的概率之和; 例如,事件”骰子掷出偶数值”的概率是 |
| | | |
| <math>p(2) + p(4) + p(6) = 1/6+1/6+1/6=1/2.</math> | | <math>p(2) + p(4) + p(6) = 1/6+1/6+1/6=1/2.</math> |
第466行: |
第466行: |
| | | |
| * [[Categorical distribution]], for a single categorical outcome (e.g. yes/no/maybe in a survey); a generalization of the [[Bernoulli distribution]] | | * [[Categorical distribution]], for a single categorical outcome (e.g. yes/no/maybe in a survey); a generalization of the [[Bernoulli distribution]] |
− | 针对单个分类结果的分类分布(例如,调查中的是/否/也许);伯努利分布的一般化
| + | 针对单个分类结果的'''<font color="#ff8000">分类分布 Categorical Distribution</font>'''(例如,调查中的是/否/也许);伯努利分布的一般化 |
| | | |
| * [[Multinomial distribution]], for the number of each type of categorical outcome, given a fixed number of total outcomes; a generalization of the [[binomial distribution]] | | * [[Multinomial distribution]], for the number of each type of categorical outcome, given a fixed number of total outcomes; a generalization of the [[binomial distribution]] |
− | 给定总结果的固定数量,针对每种类别结果的数量的多项式分布;二项式分布的一般化
| + | 给定总结果的固定数量,针对每种类别结果的数量的'''<font color="#ff8000">多项式分布 Multinomial Distribution</font>''';二项式分布的一般化 |
| | | |
| * [[Multivariate hypergeometric distribution]], similar to the [[multinomial distribution]], but using [[sampling without replacement]]; a generalization of the [[hypergeometric distribution]] | | * [[Multivariate hypergeometric distribution]], similar to the [[multinomial distribution]], but using [[sampling without replacement]]; a generalization of the [[hypergeometric distribution]] |
− | 多元超几何分布,类似于多项式分布,但使用采样而不进行替换;超几何分布的一般化
| + | '''<font color="#ff8000">多元超几何分布 Multivariate Distribution</font>''',类似于多项式分布,但使用采样而不进行替换;超几何分布的一般化 |
| | | |
| === Poisson process (events that occur independently with a given rate) 泊松过程(以给定速率独立发生的事件)=== | | === Poisson process (events that occur independently with a given rate) 泊松过程(以给定速率独立发生的事件)=== |