更改

删除1,587字节 、 2020年9月17日 (四) 12:18
无编辑摘要
第3行: 第3行:  
{{Machine learning bar}}
 
{{Machine learning bar}}
   −
 
+
数据挖掘是在大型数据集中发现模式的过程,是一种涉及到机器学习、统计学和数据库系统综合使用的方法。<ref name="acm">{{cite web |url=http://www.kdd.org/curriculum/index.html |title=Data Mining Curriculum |publisher=[[Association for Computing Machinery|ACM]] [[SIGKDD]] |date=2006-04-30 |accessdate=2014-01-27 }}</ref><ref name="brittanica">{{cite web |last=Clifton |first=Christopher |title=Encyclopædia Britannica: Definition of Data Mining |year=2010 |url=http://www.britannica.com/EBchecked/topic/1056150/data-mining |accessdate=2010-12-09 }}</ref><ref name="elements">{{cite web|last1=Hastie|first1=Trevor|authorlink1=Trevor Hastie|last2=Tibshirani|first2=Robert|authorlink2=Robert Tibshirani|last3=Friedman|first3=Jerome|authorlink3=Jerome H. Friedman|title=The Elements of Statistical Learning: Data Mining, Inference, and Prediction|year=2009|url=http://www-stat.stanford.edu/~tibs/ElemStatLearn/|accessdate=2012-08-07|archive-url=https://web.archive.org/web/20091110212529/http://www-stat.stanford.edu/~tibs/ElemStatLearn/|archive-date=2009-11-10|url-status=dead}}</ref><ref>{{cite book|last1=Han, Kamber, Pei|first1=Jaiwei, Micheline, Jian|title=Data Mining: Concepts and Techniques|date=June 9, 2011|publisher=Morgan Kaufmann|isbn=978-0-12-381479-1|edition=3rd}}</ref>数据挖掘是指“在数据库中知识发现KDD”过程中的分析步骤。除了传统的分析步骤,它还涉及数据库和数据管理方面,包括数据预处理、模型和推理考虑、'''兴趣权值考量'''、复杂性考量、发现结构的后处理、可视化和在线更新等内容。
 
  −
'''Data mining''' is the process of discovering patterns in large [[data set]]s involving methods at the intersection of [[machine learning]], [[statistics]], and [[database system]]s.<ref name="acm" /> Data mining is an [[interdisciplinary]] subfield of [[computer science]] and [[statistics]] with an overall goal to extract information (with intelligent methods) from a data set and transform the information into a comprehensible structure for further use.<ref name="acm">{{cite web |url=http://www.kdd.org/curriculum/index.html |title=Data Mining Curriculum |publisher=[[Association for Computing Machinery|ACM]] [[SIGKDD]] |date=2006-04-30 |accessdate=2014-01-27 }}</ref><ref name="brittanica">{{cite web |last=Clifton |first=Christopher |title=Encyclopædia Britannica: Definition of Data Mining |year=2010 |url=http://www.britannica.com/EBchecked/topic/1056150/data-mining |accessdate=2010-12-09 }}</ref><ref name="elements">{{cite web|last1=Hastie|first1=Trevor|authorlink1=Trevor Hastie|last2=Tibshirani|first2=Robert|authorlink2=Robert Tibshirani|last3=Friedman|first3=Jerome|authorlink3=Jerome H. Friedman|title=The Elements of Statistical Learning: Data Mining, Inference, and Prediction|year=2009|url=http://www-stat.stanford.edu/~tibs/ElemStatLearn/|accessdate=2012-08-07|archive-url=https://web.archive.org/web/20091110212529/http://www-stat.stanford.edu/~tibs/ElemStatLearn/|archive-date=2009-11-10|url-status=dead}}</ref><ref>{{cite book|last1=Han, Kamber, Pei|first1=Jaiwei, Micheline, Jian|title=Data Mining: Concepts and Techniques|date=June 9, 2011|publisher=Morgan Kaufmann|isbn=978-0-12-381479-1|edition=3rd}}</ref> Data mining is the analysis step of the "knowledge discovery in databases" process or KDD.<ref name="Fayyad" /> Aside from the raw analysis step, it also involves database and [[data management]] aspects, [[data pre-processing]], [[statistical model|model]] and [[Statistical inference|inference]] considerations, interestingness metrics, [[Computational complexity theory|complexity]] considerations, post-processing of discovered structures, [[Data visualization|visualization]], and [[Online algorithm|online updating]].<ref name="acm" />
  −
 
  −
Data mining is the process of discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems. Data mining is the analysis step of the "knowledge discovery in databases" process or KDD. Aside from the raw analysis step, it also involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating.
  −
 
  −
'''<font color="#ff8000">数据挖掘 Data Mining </font>'''是在大型数据集中发现模式的过程,是一种涉及到机器学习、统计学和数据库系统综合使用的方法。数据挖掘是指“在数据库中知识发现KDD”过程中的分析步骤。除了传统的分析步骤,它还涉及数据库和数据管理方面,包括数据预处理、模型和推理考虑、'''兴趣权值考量'''、复杂性考量、发现结构的后处理、可视化和在线更新等内容。
      
   --[[用户:Zengsihang|Zengsihang]]([[用户讨论:Zengsihang|讨论]]) 【审校】“数据挖掘是指“数据库中的知识发现KDD”的过程的分析步骤”一句中的“在数据库中知识发现KDD”处改为“知识发现(knowledge discovery in databases,KDD)”
 
   --[[用户:Zengsihang|Zengsihang]]([[用户讨论:Zengsihang|讨论]]) 【审校】“数据挖掘是指“数据库中的知识发现KDD”的过程的分析步骤”一句中的“在数据库中知识发现KDD”处改为“知识发现(knowledge discovery in databases,KDD)”
863

个编辑