更改

添加104字节 、 2020年9月25日 (五) 19:14
第27行: 第27行:  
The two most common measures of triadic closure for a graph are (in no particular order) the clustering coefficient and transitivity for that graph.
 
The two most common measures of triadic closure for a graph are (in no particular order) the clustering coefficient and transitivity for that graph.
   −
一张图的三闭合的两个最常见的度量是(不按特定顺序)该图的聚类系数和可传递性。
+
一张图的三元闭合的两个最常见的度量是(不按特定顺序)该图的'''<font color="#FF8000">聚类系数 Clustering Coefficient </font>'''和'''<font color="#FF8000">可传递性 Transitivity </font>'''。
    
===Clustering coefficient===
 
===Clustering coefficient===
 
+
聚类系数
 
One measure for the presence of triadic closure is [[clustering coefficient]], as follows:
 
One measure for the presence of triadic closure is [[clustering coefficient]], as follows:
    
One measure for the presence of triadic closure is clustering coefficient, as follows:
 
One measure for the presence of triadic closure is clustering coefficient, as follows:
   −
三元闭合的一个衡量标准是集聚系数,具体如下:
+
衡量三元闭包的一种方法是聚类系数,如下所示:
      第43行: 第43行:  
Let <math>G = (V,E)</math> be an undirected simple graph (i.e., a graph having no self-loops or multiple edges) with V the set of vertices and E the set of edges. Also, let <math>N = |V|</math> and <math>M = |E|</math> denote the number of vertices and edges in G, respectively, and let <math>d_i</math> be the degree of vertex i.
 
Let <math>G = (V,E)</math> be an undirected simple graph (i.e., a graph having no self-loops or multiple edges) with V the set of vertices and E the set of edges. Also, let <math>N = |V|</math> and <math>M = |E|</math> denote the number of vertices and edges in G, respectively, and let <math>d_i</math> be the degree of vertex i.
   −
设 g = (v,e) </math > 是一个无向简单图(即没有自回路或多条边的图) ,v 是顶点集,e 是边集。同时,让 < math > n = | v | </math > 和 < math > m = | e | </math > 分别表示 g 中的顶点数和边数,让 < math > di </math > 表示顶点的度数。
+
令<math>G =(V,E)</math>是无向的简单图(即没有自环或多个边的图),其中V为顶点集,E为边集。 另外,令<math>N = |V|</math>和<math>M = |E|</math>分别表示G中顶点和边的数量,并令<math>d_i</math> 是顶点的度i。
 
       
274

个编辑