更改

添加6字节 、 2020年9月26日 (六) 13:45
无编辑摘要
第3行: 第3行:  
{{Short description|Non-parametric statistical test between two distributions}}
 
{{Short description|Non-parametric statistical test between two distributions}}
   −
[[文件:KS Example|缩略图|右|Kolmogorov–Smirnov统计数据的图示。 红线是累积分布函数,蓝线是经验分布函数,黑色箭头是K–S统计量。]]
+
[[文件:KS_Example.png|缩略图|右|Kolmogorov–Smirnov统计数据的图示。 红线是累积分布函数,蓝线是经验分布函数,黑色箭头是K–S统计量。]]
 +
 
 +
 
    
In [[statistics]], the '''Kolmogorov–Smirnov test''' ('''K–S test''' or '''KS test''') is a [[nonparametric statistics|nonparametric test]] of the equality of continuous (or discontinuous, see [[#Discrete and mixed null distribution|Section 2.2]]), one-dimensional [[probability distribution]]s that can be used to compare a [[random sample|sample]] with a reference probability distribution (one-sample K–S test), or to compare two samples (two-sample K–S test).  It is named after  [[Andrey Kolmogorov]] and [[Nikolai Smirnov (mathematician)|Nikolai Smirnov]].
 
In [[statistics]], the '''Kolmogorov–Smirnov test''' ('''K–S test''' or '''KS test''') is a [[nonparametric statistics|nonparametric test]] of the equality of continuous (or discontinuous, see [[#Discrete and mixed null distribution|Section 2.2]]), one-dimensional [[probability distribution]]s that can be used to compare a [[random sample|sample]] with a reference probability distribution (one-sample K–S test), or to compare two samples (two-sample K–S test).  It is named after  [[Andrey Kolmogorov]] and [[Nikolai Smirnov (mathematician)|Nikolai Smirnov]].
961

个编辑