更改

添加1字节 、 2020年9月26日 (六) 14:42
第40行: 第40行:  
.
 
.
   −
自20世纪80年代末和90年代中期的“统计革命”ref name=johnson:eacl:ilcl09>[http://www.aclweb.org/anthology/W09-0103 Mark Johnson. How the statistical revolution changes (computational) linguistics.] Proceedings of the EACL 2009 Workshop on the Interaction between Linguistics and Computational Linguistics.</ref><ref name=resnik:langlog11>[http://languagelog.ldc.upenn.edu/nll/?p=2946 Philip Resnik. Four revolutions.] Language Log, February 5, 2011.</ref>以来,许多自然语言处理研究都深度依赖机器学习。机器学习的范式要求通过分析大型语料库(corpora,语料库corpus的复数形式,是一组可能带有人或计算机标注的文档)使用统计学推论自动学习这些规则。
+
自20世纪80年代末和90年代中期的“统计革命”<ref name=johnson:eacl:ilcl09>[http://www.aclweb.org/anthology/W09-0103 Mark Johnson. How the statistical revolution changes (computational) linguistics.] Proceedings of the EACL 2009 Workshop on the Interaction between Linguistics and Computational Linguistics.</ref><ref name=resnik:langlog11>[http://languagelog.ldc.upenn.edu/nll/?p=2946 Philip Resnik. Four revolutions.] Language Log, February 5, 2011.</ref>以来,许多自然语言处理研究都深度依赖机器学习。机器学习的范式要求通过分析大型语料库(corpora,语料库corpus的复数形式,是一组可能带有人或计算机标注的文档)使用统计学推论自动学习这些规则。
    
许多不同类型的机器学习算法已被应用在自然语言处理任务中。这些算法将输入数据的大量“特性”作为输入。一些最早被使用的算法,比如'''[[决策树Decision Tree]]''',使用“如果...那么..."(if-then)硬判决系统,类似于之前既有的人工制定的规则。然而后来人们将研究重点聚焦在统计模型上。统计模型将输入数据的各个特征都赋上实值权重,从而做出'''[[软判决 Soft Decision]]'''和'''[[概率决策 Probabilistic Decision]]'''。这种模型的优点是,它们可以表示出许多不同的可能答案的相对确定性,而不仅仅是一个答案。当这种模型作为一个更大系统的模块时,产生的结果更加可靠。
 
许多不同类型的机器学习算法已被应用在自然语言处理任务中。这些算法将输入数据的大量“特性”作为输入。一些最早被使用的算法,比如'''[[决策树Decision Tree]]''',使用“如果...那么..."(if-then)硬判决系统,类似于之前既有的人工制定的规则。然而后来人们将研究重点聚焦在统计模型上。统计模型将输入数据的各个特征都赋上实值权重,从而做出'''[[软判决 Soft Decision]]'''和'''[[概率决策 Probabilistic Decision]]'''。这种模型的优点是,它们可以表示出许多不同的可能答案的相对确定性,而不仅仅是一个答案。当这种模型作为一个更大系统的模块时,产生的结果更加可靠。
421

个编辑