第880行: |
第880行: |
| 另一种方法是定义一组具有特定有限维分布的随机变量,然后用 Kolmogorov 的存在性定理证明相应的随机过程存在。他说,如果任何有限维分布满足两个条件,也就是所谓的一致性条件,那么就存在这些有限维分布的随机过程。这意味着随机过程的分布并不一定唯一地指定随机过程的样本函数的属性。 | | 另一种方法是定义一组具有特定有限维分布的随机变量,然后用 Kolmogorov 的存在性定理证明相应的随机过程存在。他说,如果任何有限维分布满足两个条件,也就是所谓的一致性条件,那么就存在这些有限维分布的随机过程。这意味着随机过程的分布并不一定唯一地指定随机过程的样本函数的属性。 |
| | | |
− | ==Further examples== | + | ==Further examples更多示例== |
| | | |
| | | |
第888行: |
第888行: |
| 另一个问题是,连续时间过程的泛函依赖于指数集中无法计算的点数,因此某些事件的概率可能无法很好地定义。可分性保证了无穷维分布决定样本函数的性质,它要求样本函数本质上是由指数集中的稠密可数点集上的值决定的。此外,如果随机过程是可分的,那么指数集上不可数个点的泛函是可测的,并且可以研究它们的概率。对于任意度量空间作为状态空间的连续时间随机过程。为了构造这样一个随机过程,我们假设随机过程的样本函数属于某个适当的函数空间,这个空间通常是由所有右连续函数和左极限组成的 Skorokhod 空间。这种方法现在比可分离性假设更常用,但是基于这种方法的随机过程可自动分离。 | | 另一个问题是,连续时间过程的泛函依赖于指数集中无法计算的点数,因此某些事件的概率可能无法很好地定义。可分性保证了无穷维分布决定样本函数的性质,它要求样本函数本质上是由指数集中的稠密可数点集上的值决定的。此外,如果随机过程是可分的,那么指数集上不可数个点的泛函是可测的,并且可以研究它们的概率。对于任意度量空间作为状态空间的连续时间随机过程。为了构造这样一个随机过程,我们假设随机过程的样本函数属于某个适当的函数空间,这个空间通常是由所有右连续函数和左极限组成的 Skorokhod 空间。这种方法现在比可分离性假设更常用,但是基于这种方法的随机过程可自动分离。 |
| | | |
− | ===Markov processes and chains=== | + | ===Markov processes and chains马尔可夫过程与链=== |
| | | |
| {{Main|Markov process}} | | {{Main|Markov process}} |
− | | + | {{Main |马尔可夫过程}} |
| Although less used, the separability assumption is considered more general because every stochastic process has a separable version. For example, separability is assumed when constructing and studying random fields, where the collection of random variables is now indexed by sets other than the real line such as <math>n</math>-dimensional Euclidean space. | | Although less used, the separability assumption is considered more general because every stochastic process has a separable version. For example, separability is assumed when constructing and studying random fields, where the collection of random variables is now indexed by sets other than the real line such as <math>n</math>-dimensional Euclidean space. |
| | | |
第898行: |
第898行: |
| Markov processes are stochastic processes, traditionally in [[Discrete time and continuous time|discrete or continuous time]], that have the Markov property, which means the next value of the Markov process depends on the current value, but it is conditionally independent of the previous values of the stochastic process. In other words, the behavior of the process in the future is stochastically independent of its behavior in the past, given the current state of the process.<ref name="Serfozo2009page2">{{cite book|author=Richard Serfozo|title=Basics of Applied Stochastic Processes|url=https://books.google.com/books?id=JBBRiuxTN0QC|year=2009|publisher=Springer Science & Business Media|isbn=978-3-540-89332-5|page=2}}</ref><ref name="Rozanov2012page58">{{cite book|author=Y.A. Rozanov|title=Markov Random Fields|url=https://books.google.com/books?id=wGUECAAAQBAJ|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4613-8190-7|page=58}}</ref> | | Markov processes are stochastic processes, traditionally in [[Discrete time and continuous time|discrete or continuous time]], that have the Markov property, which means the next value of the Markov process depends on the current value, but it is conditionally independent of the previous values of the stochastic process. In other words, the behavior of the process in the future is stochastically independent of its behavior in the past, given the current state of the process.<ref name="Serfozo2009page2">{{cite book|author=Richard Serfozo|title=Basics of Applied Stochastic Processes|url=https://books.google.com/books?id=JBBRiuxTN0QC|year=2009|publisher=Springer Science & Business Media|isbn=978-3-540-89332-5|page=2}}</ref><ref name="Rozanov2012page58">{{cite book|author=Y.A. Rozanov|title=Markov Random Fields|url=https://books.google.com/books?id=wGUECAAAQBAJ|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4613-8190-7|page=58}}</ref> |
| | | |
| + | 马尔可夫过程是一种随机过程,传统上在[[离散时间和连续时间|离散或连续时间]]中,具有马尔可夫特性,即马尔可夫过程的下一个值取决于当前值,但它与随机过程的先前值有条件无关。换句话说,给定进程的当前状态,进程在未来的行为与它过去的行为是随机独立的。<ref name=“Serfozo2009page2”>{cite book | author=Richard Serfozo | title=Basics of Applied randocial Processes | url=https://books.google.com/books?id=JBBRiuxTN0QC | year=2009 | publisher=Springer Science&Business Media | isbn=978-3-540-89332-5 | page=2}</ref><ref name=“Rozanov2012page58”>{cite book |作者=Y.A.Rozanov | title=Markov Random Fields| url=https://books.google.com/books?id=wguecaaqbaj | year=2012 | publisher=Springer Science&Business Media | isbn=978-1-4613-8190-7 | page=58}</ref> |
| | | |
| + | The Brownian motion process and the Poisson process (in one dimension) are both examples of Markov processes<ref name="Ross1996page235and358">{{cite book|author=Sheldon M. Ross|title=Stochastic processes|url=https://books.google.com/books?id=ImUPAQAAMAAJ|year=1996|publisher=Wiley|isbn=978-0-471-12062-9|pages=235, 358}}</ref> in continuous time, while [[random walk]]s on the integers and the [[gambler's ruin]] problem are examples of Markov processes in discrete time.<ref name="Florescu2014page373">{{cite book|author=Ionut Florescu|title=Probability and Stochastic Processes|url=https://books.google.com/books?id=Z5xEBQAAQBAJ&pg=PR22|year=2014|publisher=John Wiley & Sons|isbn=978-1-118-59320-2|pages=373, 374}}</ref><ref name="KarlinTaylor2012page49">{{cite book|author1=Samuel Karlin|author2=Howard E. Taylor|title=A First Course in Stochastic Processes|url=https://books.google.com/books?id=dSDxjX9nmmMC|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|page=49}}</ref> |
| | | |
− | The Brownian motion process and the Poisson process (in one dimension) are both examples of Markov processes<ref name="Ross1996page235and358">{{cite book|author=Sheldon M. Ross|title=Stochastic processes|url=https://books.google.com/books?id=ImUPAQAAMAAJ|year=1996|publisher=Wiley|isbn=978-0-471-12062-9|pages=235, 358}}</ref> in continuous time, while [[random walk]]s on the integers and the [[gambler's ruin]] problem are examples of Markov processes in discrete time.<ref name="Florescu2014page373">{{cite book|author=Ionut Florescu|title=Probability and Stochastic Processes|url=https://books.google.com/books?id=Z5xEBQAAQBAJ&pg=PR22|year=2014|publisher=John Wiley & Sons|isbn=978-1-118-59320-2|pages=373, 374}}</ref><ref name="KarlinTaylor2012page49">{{cite book|author1=Samuel Karlin|author2=Howard E. Taylor|title=A First Course in Stochastic Processes|url=https://books.google.com/books?id=dSDxjX9nmmMC|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|page=49}}</ref>
| + | 布朗运动过程和泊松过程(一维)都是马尔可夫过程的例子=https://books.google.com/books?id=ImUPAQAAMAAJ |年=1996 | publisher=Wiley | isbn=978-0-471-12062-9 | pages=235358}</ref>,整数上的[[随机游走]]和[[赌徒破产]]问题是离散时间中马尔可夫过程的例子=https://books.google.com/books?id=z5sebqaaqabaj&pg=PR22 | year=2014 | publisher=John Wiley&Sons | isbn=978-1-118-59320-2 | pages=373,374}</ref><ref name=“KarlinTaylor2012page49”>{cite book | author1=Samuel Karlin | author2=Howard E.Taylor | title=随机过程第一门课程|网址=https://books.google.com/books?id=dSDxjX9nmmMC |年份=2012 | publisher=学术出版社| isbn=978-0-08-057041-9 | page=49}</ref> |
| | | |
| {{columns-list|colwidth=30em| | | {{columns-list|colwidth=30em| |
第909行: |
第911行: |
| | | |
| A Markov chain is a type of Markov process that has either discrete [[state space]] or discrete index set (often representing time), but the precise definition of a Markov chain varies.<ref name="Asmussen2003page7">{{cite book|url=https://books.google.com/books?id=BeYaTxesKy0C|title=Applied Probability and Queues|year=2003|publisher=Springer Science & Business Media|isbn=978-0-387-00211-8|page=7|author=Søren Asmussen}}</ref> For example, it is common to define a Markov chain as a Markov process in either [[Continuous and discrete variables|discrete or continuous time]] with a countable state space (thus regardless of the nature of time),<ref name="Parzen1999page188">{{cite book|url=https://books.google.com/books?id=0mB2CQAAQBAJ|title=Stochastic Processes|year=2015|publisher=Courier Dover Publications|isbn=978-0-486-79688-8|page=188|author=Emanuel Parzen}}</ref><ref name="KarlinTaylor2012page29">{{cite book|url=https://books.google.com/books?id=dSDxjX9nmmMC|title=A First Course in Stochastic Processes|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|pages=29, 30|author1=Samuel Karlin|author2=Howard E. Taylor}}</ref><ref name="Lamperti1977chap6">{{cite book|url=https://books.google.com/books?id=Pd4cvgAACAAJ|title=Stochastic processes: a survey of the mathematical theory|publisher=Springer-Verlag|year=1977|isbn=978-3-540-90275-1|pages=106–121|author=John Lamperti}}</ref><ref name="Ross1996page174and231">{{cite book|url=https://books.google.com/books?id=ImUPAQAAMAAJ|title=Stochastic processes|publisher=Wiley|year=1996|isbn=978-0-471-12062-9|pages=174, 231|author=Sheldon M. Ross}}</ref> but it has been also common to define a Markov chain as having discrete time in either countable or continuous state space (thus regardless of the state space).<ref name="Asmussen2003page7" /> It has been argued that the first definition of a Markov chain, where it has discrete time, now tends to be used, despite the second definition having been used by researchers like [[Joseph Doob]] and [[Kai Lai Chung]].<ref name="MeynTweedie2009">{{cite book|author1=Sean Meyn|author2=Richard L. Tweedie|title=Markov Chains and Stochastic Stability|url=https://books.google.com/books?id=Md7RnYEPkJwC|year=2009|publisher=Cambridge University Press|isbn=978-0-521-73182-9|page=19}}</ref> | | A Markov chain is a type of Markov process that has either discrete [[state space]] or discrete index set (often representing time), but the precise definition of a Markov chain varies.<ref name="Asmussen2003page7">{{cite book|url=https://books.google.com/books?id=BeYaTxesKy0C|title=Applied Probability and Queues|year=2003|publisher=Springer Science & Business Media|isbn=978-0-387-00211-8|page=7|author=Søren Asmussen}}</ref> For example, it is common to define a Markov chain as a Markov process in either [[Continuous and discrete variables|discrete or continuous time]] with a countable state space (thus regardless of the nature of time),<ref name="Parzen1999page188">{{cite book|url=https://books.google.com/books?id=0mB2CQAAQBAJ|title=Stochastic Processes|year=2015|publisher=Courier Dover Publications|isbn=978-0-486-79688-8|page=188|author=Emanuel Parzen}}</ref><ref name="KarlinTaylor2012page29">{{cite book|url=https://books.google.com/books?id=dSDxjX9nmmMC|title=A First Course in Stochastic Processes|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|pages=29, 30|author1=Samuel Karlin|author2=Howard E. Taylor}}</ref><ref name="Lamperti1977chap6">{{cite book|url=https://books.google.com/books?id=Pd4cvgAACAAJ|title=Stochastic processes: a survey of the mathematical theory|publisher=Springer-Verlag|year=1977|isbn=978-3-540-90275-1|pages=106–121|author=John Lamperti}}</ref><ref name="Ross1996page174and231">{{cite book|url=https://books.google.com/books?id=ImUPAQAAMAAJ|title=Stochastic processes|publisher=Wiley|year=1996|isbn=978-0-471-12062-9|pages=174, 231|author=Sheldon M. Ross}}</ref> but it has been also common to define a Markov chain as having discrete time in either countable or continuous state space (thus regardless of the state space).<ref name="Asmussen2003page7" /> It has been argued that the first definition of a Markov chain, where it has discrete time, now tends to be used, despite the second definition having been used by researchers like [[Joseph Doob]] and [[Kai Lai Chung]].<ref name="MeynTweedie2009">{{cite book|author1=Sean Meyn|author2=Richard L. Tweedie|title=Markov Chains and Stochastic Stability|url=https://books.google.com/books?id=Md7RnYEPkJwC|year=2009|publisher=Cambridge University Press|isbn=978-0-521-73182-9|page=19}}</ref> |
| + | 马尔可夫链是一种具有离散[[状态空间]]或离散索引集(通常表示时间)的马尔可夫过程,但马尔可夫链的精确定义各不相同=https://books.google.com/books?id=BeYaTxesKy0C | title=Applied Probability and Queues | year=2003 | publisher=Springer Science&Business Media | isbn=978-0-387-00211-8 | page=7 | author=Søen Asmussen}</ref>例如,通常将马尔可夫链定义为具有可数状态空间的[[连续变量|离散或连续时间]]中的马尔可夫过程(因此不管时间的性质),<ref name=“Parzen1999page188”>{cite book |网址=https://books.google.com/books?id=0mB2CQAAQBAJ | title=随机过程|年份=2015 | publisher=Courier Dover Publications | isbn=978-0-486-79688-8 | page=188 | author=Emanuel Parzen}</ref><ref name=“KarlinTaylor2012page29”>{cite book|网址=https://books.google.com/books?id=dSDxjX9nmmMC | title=A First Course in randocial Processes | year=2012 | publisher=学术出版社| isbn=978-0-08-057041-9 | pages=29,30 | author1=Samuel Karlin | author2=Howard E.Taylor}</ref><ref name=“Lamperti1977chap6”>{cite book|网址=https://books.google.com/books?id=pd4cvgaacaj | title=随机过程:数学理论综述| publisher=Springer Verlag | year=1977 | isbn=978-3-540-90275-1 | pages=106–121 | author=John Lamperti}</ref><ref name=“Ross1996page174and231”>{cite book|网址=https://books.google.com/books?id=ImUPAQAAMAAJ | title=随机过程| publisher=Wiley | year=1996 | isbn=978-0-471-12062-9 | pages=174,231 | author=Sheldon M.Ross}</ref>但将马尔可夫链定义为在可数状态空间或连续状态空间(因此与状态空间无关)中具有离散时间也是常见的马尔可夫链的第一个定义,它有离散时间,现在倾向于使用,尽管第二个定义已经被[[Joseph Doob]]和[[Kai Lai Chung]]等研究人员所使用。<ref name=“MeynTweedie2009”>{cite book | author1=Sean Meyn | author2=Richard L.Tweedie | title=Markov链和随机稳定性| url=https://books.google.com/books?id=Md7RnYEPkJwC | year=2009 | publisher=Cambridge University Press | isbn=978-0-521-73182-9 | page=19}</ref> |
| | | |
| | | |
第914行: |
第917行: |
| Markov processes form an important class of stochastic processes and have applications in many areas.<ref name="LatoucheRamaswami1999"/><ref name="KarlinTaylor2012page47">{{cite book|author1=Samuel Karlin|author2=Howard E. Taylor|title=A First Course in Stochastic Processes|url=https://books.google.com/books?id=dSDxjX9nmmMC|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|page=47}}</ref> For example, they are the basis for a general stochastic simulation method known as [[Markov chain Monte Carlo]], which is used for simulating random objects with specific probability distributions, and has found application in [[Bayesian statistics]].<ref name="RubinsteinKroese2011page225">{{cite book|author1=Reuven Y. Rubinstein|author2=Dirk P. Kroese|title=Simulation and the Monte Carlo Method|url=https://books.google.com/books?id=yWcvT80gQK4C|year=2011|publisher=John Wiley & Sons|isbn=978-1-118-21052-9|page=225}}</ref><ref name="GamermanLopes2006">{{cite book|author1=Dani Gamerman|author2=Hedibert F. Lopes|title=Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition|url=https://books.google.com/books?id=yPvECi_L3bwC|year=2006|publisher=CRC Press|isbn=978-1-58488-587-0}}</ref> | | Markov processes form an important class of stochastic processes and have applications in many areas.<ref name="LatoucheRamaswami1999"/><ref name="KarlinTaylor2012page47">{{cite book|author1=Samuel Karlin|author2=Howard E. Taylor|title=A First Course in Stochastic Processes|url=https://books.google.com/books?id=dSDxjX9nmmMC|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|page=47}}</ref> For example, they are the basis for a general stochastic simulation method known as [[Markov chain Monte Carlo]], which is used for simulating random objects with specific probability distributions, and has found application in [[Bayesian statistics]].<ref name="RubinsteinKroese2011page225">{{cite book|author1=Reuven Y. Rubinstein|author2=Dirk P. Kroese|title=Simulation and the Monte Carlo Method|url=https://books.google.com/books?id=yWcvT80gQK4C|year=2011|publisher=John Wiley & Sons|isbn=978-1-118-21052-9|page=225}}</ref><ref name="GamermanLopes2006">{{cite book|author1=Dani Gamerman|author2=Hedibert F. Lopes|title=Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition|url=https://books.google.com/books?id=yPvECi_L3bwC|year=2006|publisher=CRC Press|isbn=978-1-58488-587-0}}</ref> |
| | | |
− | | + | 马尔可夫过程是一类重要的随机过程,在许多领域有着广泛的应用=https://books.google.com/books?id=dSDxjX9nmmMC | year=2012 | publisher=academical Press | isbn=978-0-08-057041-9 | page=47}</ref>例如,它们是一种称为[[Markov chain Monte Carlo]]的一般随机模拟方法的基础,该方法用于模拟具有特定概率分布的随机对象,并在[[Bayesian statistics]].<ref name=“RubinsteinKroese2011page225”>{cite book | author1=Reuven Y.Rubinstein | author2=Dirk P.Kroese | title=Simulation和蒙特卡罗方法url=https://books.google.com/books?id=yWcvT80gQK4C | year=2011 | publisher=John Wiley&Sons | isbn=978-1-118-21052-9 | page=225}</ref><ref name=“gamerlopes2006”>{引用图书| author1=Dani Gamerman | author2=Hedibert F.Lopes | title=Markov Chain montecarlo:贝叶斯推断随机模拟,第二版|网址=https://books.google.com/books?id=yPvECi|L3bwC | year=2006 | publisher=CRC Press | isbn=978-1-58488-587-0}</ref> |
| | | |
| The concept of the Markov property was originally for stochastic processes in continuous and discrete time, but the property has been adapted for other index sets such as <math>n</math>-dimensional Euclidean space, which results in collections of random variables known as Markov random fields.<ref name="Rozanov2012page61">{{cite book|author=Y.A. Rozanov|title=Markov Random Fields|url=https://books.google.com/books?id=wGUECAAAQBAJ|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4613-8190-7|page=61}}</ref><ref>{{cite book|author1=Donald L. Snyder|author2=Michael I. Miller|title=Random Point Processes in Time and Space|url=https://books.google.com/books?id=c_3UBwAAQBAJ|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4612-3166-0|page=27}}</ref><ref name="Bremaud2013page253">{{cite book|author=Pierre Bremaud|title=Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues|url=https://books.google.com/books?id=jrPVBwAAQBAJ|year=2013|publisher=Springer Science & Business Media|isbn=978-1-4757-3124-8|page=253}}</ref> | | The concept of the Markov property was originally for stochastic processes in continuous and discrete time, but the property has been adapted for other index sets such as <math>n</math>-dimensional Euclidean space, which results in collections of random variables known as Markov random fields.<ref name="Rozanov2012page61">{{cite book|author=Y.A. Rozanov|title=Markov Random Fields|url=https://books.google.com/books?id=wGUECAAAQBAJ|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4613-8190-7|page=61}}</ref><ref>{{cite book|author1=Donald L. Snyder|author2=Michael I. Miller|title=Random Point Processes in Time and Space|url=https://books.google.com/books?id=c_3UBwAAQBAJ|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4612-3166-0|page=27}}</ref><ref name="Bremaud2013page253">{{cite book|author=Pierre Bremaud|title=Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues|url=https://books.google.com/books?id=jrPVBwAAQBAJ|year=2013|publisher=Springer Science & Business Media|isbn=978-1-4757-3124-8|page=253}}</ref> |
| | | |
| + | 马尔可夫特性的概念最初是针对连续和离散时间的随机过程,但它也适用于其它指标集,如<math>n</math>维欧氏空间,这导致随机变量的集合被称为马尔可夫随机场=https://books.google.com/books?id=wguecaaqbaj | year=2012 | publisher=Springer Science&Business Media | isbn=978-1-4613-8190-7 | page=61}</ref><ref>{cite book | author1=Donald L.Snyder | author2=Michael I.Miller | title=时空中的随机点过程| url=https://books.google.com/books?id=c_3UBwAAQBAJ | year=2012 | publisher=Springer Science&Business Media | isbn=978-1-4612-3166-0 | page=27}</ref><ref name=“bremaud2013 page253”>{cite book |作者=Pierre Bremaud | title=Markov Chains:Gibbs Fields,montecarlo Simulation,and Queues |网址=https://books.google.com/books?id=jrpvwwaaqbaj |年份=2013 | publisher=Springer科学与商业媒体| isbn=978-1-4757-3124-8 | page=253}</ref> |
| | | |
− | | + | ===Martingale鞅=== |
− | ===Martingale=== | |
| | | |
| {{Main|Martingale (probability theory)}} | | {{Main|Martingale (probability theory)}} |
| + | {{Main |鞅(概率论)}} |
| | | |
| A martingale is a discrete-time or continuous-time stochastic process with the property that, at every instant, given the current value and all the past values of the process, the conditional expectation of every future value is equal to the current value. In discrete time, if this property holds for the next value, then it holds for all future values. The exact mathematical definition of a martingale requires two other conditions coupled with the mathematical concept of a filtration, which is related to the intuition of increasing available information as time passes. Martingales are usually defined to be real-valued,<ref name="Klebaner2005page65">{{cite book|author=Fima C. Klebaner|title=Introduction to Stochastic Calculus with Applications|url=https://books.google.com/books?id=JYzW0uqQxB0C|year=2005|publisher=Imperial College Press|isbn=978-1-86094-555-7|page=65}}</ref><ref name="KaratzasShreve2014page11">{{cite book|author1=Ioannis Karatzas|author2=Steven Shreve|title=Brownian Motion and Stochastic Calculus|url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5|year=1991|publisher=Springer|isbn=978-1-4612-0949-2|page=11}}</ref><ref name="Williams1991page93">{{cite book|author=David Williams|title=Probability with Martingales|url=https://books.google.com/books?id=e9saZ0YSi-AC|year=1991|publisher=Cambridge University Press|isbn=978-0-521-40605-5|pages=93, 94}}</ref> but they can also be complex-valued<ref name="Doob1990page292">{{cite book|author=Joseph L. Doob|title=Stochastic processes|url=https://books.google.com/books?id=NrsrAAAAYAAJ|year=1990|publisher=Wiley|pages=292, 293}}</ref> or even more general.<ref name="Pisier2016">{{cite book|author=Gilles Pisier|title=Martingales in Banach Spaces|url=https://books.google.com/books?id=n3JNDAAAQBAJ&pg=PR4|year=2016|publisher=Cambridge University Press|isbn=978-1-316-67946-3}}</ref> | | A martingale is a discrete-time or continuous-time stochastic process with the property that, at every instant, given the current value and all the past values of the process, the conditional expectation of every future value is equal to the current value. In discrete time, if this property holds for the next value, then it holds for all future values. The exact mathematical definition of a martingale requires two other conditions coupled with the mathematical concept of a filtration, which is related to the intuition of increasing available information as time passes. Martingales are usually defined to be real-valued,<ref name="Klebaner2005page65">{{cite book|author=Fima C. Klebaner|title=Introduction to Stochastic Calculus with Applications|url=https://books.google.com/books?id=JYzW0uqQxB0C|year=2005|publisher=Imperial College Press|isbn=978-1-86094-555-7|page=65}}</ref><ref name="KaratzasShreve2014page11">{{cite book|author1=Ioannis Karatzas|author2=Steven Shreve|title=Brownian Motion and Stochastic Calculus|url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5|year=1991|publisher=Springer|isbn=978-1-4612-0949-2|page=11}}</ref><ref name="Williams1991page93">{{cite book|author=David Williams|title=Probability with Martingales|url=https://books.google.com/books?id=e9saZ0YSi-AC|year=1991|publisher=Cambridge University Press|isbn=978-0-521-40605-5|pages=93, 94}}</ref> but they can also be complex-valued<ref name="Doob1990page292">{{cite book|author=Joseph L. Doob|title=Stochastic processes|url=https://books.google.com/books?id=NrsrAAAAYAAJ|year=1990|publisher=Wiley|pages=292, 293}}</ref> or even more general.<ref name="Pisier2016">{{cite book|author=Gilles Pisier|title=Martingales in Banach Spaces|url=https://books.google.com/books?id=n3JNDAAAQBAJ&pg=PR4|year=2016|publisher=Cambridge University Press|isbn=978-1-316-67946-3}}</ref> |
| + | |
| + | 鞅是一个离散时间或连续时间的随机过程,其性质是在给定过程的当前值和所有过去值的情况下,每个未来值的条件期望值等于当前值。在离散时间中,如果此属性适用于下一个值,则它适用于所有未来值。鞅的精确数学定义需要另外两个条件与过滤的数学概念相结合,这与随时间推移增加可用信息的直觉有关。鞅通常被定义为实值,<ref name=“Klebaner2005page65”>{cite book | author=Fima C.Klebaner | title=随机微积分及其应用简介=https://books.google.com/books?id=JYzW0uqQxB0C | year=2005 | publisher=Imperial College Press | isbn=978-1-86094-555-7 | page=65}</ref><ref name=“KaratzasShreve2014page11”>{cite book | author1=Ioannis Karatzas | author2=Steven Shreve | title=布朗运动和随机微积分| url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5 | year=1991 | publisher=Springer | isbn=978-1-4612-0949-2 | page=11}</ref><ref name=“Williams1991page93”>{引用图书|作者=David Williams | title=Probability with鞅| url=https://books.google.com/books?id=e9saZ0YSi AC | year=1991 | publisher=Cambridge University Press | isbn=978-0-521-40605-5 | pages=93,94}</ref>但是它们也可以是复杂值<ref name=“Doob1990page292”>{cite book | author=Joseph L.Doob | title=randouses | url=https://books.google.com/books?id=nrsraaayaaj | year=1990 | publisher=Wiley | pages=2929293}</ref>或更一般的。<ref name=“Pisier2016”>{cite book | author=Gilles Pisier | title=Banach空格中的鞅| url=https://books.google.com/books?id=n3JNDAAAQBAJ&pg=PR4 | year=2016 | publisher=Cambridge University Press | isbn=978-1-316-67946-3}</ref> |
| | | |
| | | |
第930行: |
第936行: |
| A symmetric random walk and a Wiener process (with zero drift) are both examples of martingales, respectively, in discrete and continuous time.<ref name="Klebaner2005page65"/><ref name="KaratzasShreve2014page11"/> For a [[sequence]] of [[independent and identically distributed]] random variables <math>X_1, X_2, X_3, \dots</math> with zero mean, the stochastic process formed from the successive partial sums <math>X_1,X_1+ X_2, X_1+ X_2+X_3, \dots</math> is a discrete-time martingale.<ref name="Steele2012page12">{{cite book|author=J. Michael Steele|title=Stochastic Calculus and Financial Applications|url=https://books.google.com/books?id=fsgkBAAAQBAJ&pg=PR4|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4684-9305-4|pages=12, 13}}</ref> In this aspect, discrete-time martingales generalize the idea of partial sums of independent random variables.<ref name="HallHeyde2014page2">{{cite book|author1=P. Hall|author2=C. C. Heyde|title=Martingale Limit Theory and Its Application|url=https://books.google.com/books?id=gqriBQAAQBAJ&pg=PR10|year=2014|publisher=Elsevier Science|isbn=978-1-4832-6322-9|page=2}}</ref> | | A symmetric random walk and a Wiener process (with zero drift) are both examples of martingales, respectively, in discrete and continuous time.<ref name="Klebaner2005page65"/><ref name="KaratzasShreve2014page11"/> For a [[sequence]] of [[independent and identically distributed]] random variables <math>X_1, X_2, X_3, \dots</math> with zero mean, the stochastic process formed from the successive partial sums <math>X_1,X_1+ X_2, X_1+ X_2+X_3, \dots</math> is a discrete-time martingale.<ref name="Steele2012page12">{{cite book|author=J. Michael Steele|title=Stochastic Calculus and Financial Applications|url=https://books.google.com/books?id=fsgkBAAAQBAJ&pg=PR4|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4684-9305-4|pages=12, 13}}</ref> In this aspect, discrete-time martingales generalize the idea of partial sums of independent random variables.<ref name="HallHeyde2014page2">{{cite book|author1=P. Hall|author2=C. C. Heyde|title=Martingale Limit Theory and Its Application|url=https://books.google.com/books?id=gqriBQAAQBAJ&pg=PR10|year=2014|publisher=Elsevier Science|isbn=978-1-4832-6322-9|page=2}}</ref> |
| | | |
− | | + | 对称随机游动和Wiener过程(具有零漂移)分别是离散时间和连续时间的鞅的例子。<ref name=“Klebaner2005page65”/><ref name=“KaratzasShreve2014page11”/>对于一个[[独立且同分布]]随机变量的[[sequence]]<math>X_1,X_2,X_3,dots</math>且平均值为零,由连续部分和构成的随机过程是一个离散时间鞅=https://books.google.com/books?id=fsgkbaaqbaj&pg=PR4 | year=2012 | publisher=Springer Science&Business Media | isbn=978-1-4684-9305-4 | pages=12,13}</ref>,离散时间鞅推广了独立随机变量的部分和的概念=https://books.google.com/books?id=gqriBQAAQBAJ&pg=PR10 |年份=2014 | publisher=Elsevier Science | isbn=978-1-4832-6322-9 | page=2}</ref> |
| | | |
| Martingales can also be created from stochastic processes by applying some suitable transformations, which is the case for the homogeneous Poisson process (on the real line) resulting in a martingale called the ''compensated Poisson process''.<ref name="KaratzasShreve2014page11"/> Martingales can also be built from other martingales.<ref name="Steele2012page12"/> For example, there are martingales based on the martingale the Wiener process, forming continuous-time martingales.<ref name="Klebaner2005page65"/><ref name="Steele2012page115">{{cite book|author=J. Michael Steele|title=Stochastic Calculus and Financial Applications|url=https://books.google.com/books?id=fsgkBAAAQBAJ&pg=PR4|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4684-9305-4|page=115}}</ref> | | Martingales can also be created from stochastic processes by applying some suitable transformations, which is the case for the homogeneous Poisson process (on the real line) resulting in a martingale called the ''compensated Poisson process''.<ref name="KaratzasShreve2014page11"/> Martingales can also be built from other martingales.<ref name="Steele2012page12"/> For example, there are martingales based on the martingale the Wiener process, forming continuous-time martingales.<ref name="Klebaner2005page65"/><ref name="Steele2012page115">{{cite book|author=J. Michael Steele|title=Stochastic Calculus and Financial Applications|url=https://books.google.com/books?id=fsgkBAAAQBAJ&pg=PR4|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4684-9305-4|page=115}}</ref> |
| | | |
− | | + | 通过应用适当的变换,也可以从随机过程中产生鞅,这就是齐次泊松过程(在实线上)的情形,其结果是一个称为“补偿泊松过程”的鞅。<ref name=“karatzashreserve2014page11”/>也可以从其他鞅中构建鞅。<ref name=“Steele2012page12”/>例如,有基于鞅的鞅Wiener过程,形成连续时间鞅。<ref name=“Klebaner2005page65”/><ref name=“Steele2012page115”>{cite book | author=J.Michael Steele | title=随机微积分与金融应用=https://books.google.com/books?id=fsgkbaaqbaj&pg=PR4 | year=2012 | publisher=Springer科学与商业媒体| isbn=978-1-4684-9305-4 | page=115}</ref> |
| | | |
| Martingales mathematically formalize the idea of a fair game,<ref name="Ross1996page295">{{cite book|author=Sheldon M. Ross|title=Stochastic processes|url=https://books.google.com/books?id=ImUPAQAAMAAJ|year=1996|publisher=Wiley|isbn=978-0-471-12062-9|page=295}}</ref> and they were originally developed to show that it is not possible to win a fair game.<ref name="Steele2012page11"/> But now they are used in many areas of probability, which is one of the main reasons for studying them.<ref name="Williams1991page93"/><ref name="Steele2012page11">{{cite book|author=J. Michael Steele|title=Stochastic Calculus and Financial Applications|url=https://books.google.com/books?id=fsgkBAAAQBAJ&pg=PR4|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4684-9305-4|page=11}}</ref><ref name="Kallenberg2002page96">{{cite book|author=Olav Kallenberg|title=Foundations of Modern Probability|url=https://books.google.com/books?id=L6fhXh13OyMC|year=2002|publisher=Springer Science & Business Media|isbn=978-0-387-95313-7|pages=96}}</ref> Many problems in probability have been solved by finding a martingale in the problem and studying it.<ref name="Steele2012page371">{{cite book|author=J. Michael Steele|title=Stochastic Calculus and Financial Applications|url=https://books.google.com/books?id=fsgkBAAAQBAJ&pg=PR4|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4684-9305-4|page=371}}</ref> Martingales will converge, given some conditions on their moments, so they are often used to derive convergence results, due largely to [[martingale convergence theorem]]s.<ref name="HallHeyde2014page2"/><ref name="Steele2012page22">{{cite book|author=J. Michael Steele|title=Stochastic Calculus and Financial Applications|url=https://books.google.com/books?id=fsgkBAAAQBAJ&pg=PR4|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4684-9305-4|page=22}}</ref><ref name="GrimmettStirzaker2001page336">{{cite book|author1=Geoffrey Grimmett|author2=David Stirzaker|title=Probability and Random Processes|url=https://books.google.com/books?id=G3ig-0M4wSIC|year=2001|publisher=OUP Oxford|isbn=978-0-19-857222-0|page=336}}</ref> | | Martingales mathematically formalize the idea of a fair game,<ref name="Ross1996page295">{{cite book|author=Sheldon M. Ross|title=Stochastic processes|url=https://books.google.com/books?id=ImUPAQAAMAAJ|year=1996|publisher=Wiley|isbn=978-0-471-12062-9|page=295}}</ref> and they were originally developed to show that it is not possible to win a fair game.<ref name="Steele2012page11"/> But now they are used in many areas of probability, which is one of the main reasons for studying them.<ref name="Williams1991page93"/><ref name="Steele2012page11">{{cite book|author=J. Michael Steele|title=Stochastic Calculus and Financial Applications|url=https://books.google.com/books?id=fsgkBAAAQBAJ&pg=PR4|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4684-9305-4|page=11}}</ref><ref name="Kallenberg2002page96">{{cite book|author=Olav Kallenberg|title=Foundations of Modern Probability|url=https://books.google.com/books?id=L6fhXh13OyMC|year=2002|publisher=Springer Science & Business Media|isbn=978-0-387-95313-7|pages=96}}</ref> Many problems in probability have been solved by finding a martingale in the problem and studying it.<ref name="Steele2012page371">{{cite book|author=J. Michael Steele|title=Stochastic Calculus and Financial Applications|url=https://books.google.com/books?id=fsgkBAAAQBAJ&pg=PR4|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4684-9305-4|page=371}}</ref> Martingales will converge, given some conditions on their moments, so they are often used to derive convergence results, due largely to [[martingale convergence theorem]]s.<ref name="HallHeyde2014page2"/><ref name="Steele2012page22">{{cite book|author=J. Michael Steele|title=Stochastic Calculus and Financial Applications|url=https://books.google.com/books?id=fsgkBAAAQBAJ&pg=PR4|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4684-9305-4|page=22}}</ref><ref name="GrimmettStirzaker2001page336">{{cite book|author1=Geoffrey Grimmett|author2=David Stirzaker|title=Probability and Random Processes|url=https://books.google.com/books?id=G3ig-0M4wSIC|year=2001|publisher=OUP Oxford|isbn=978-0-19-857222-0|page=336}}</ref> |
| | | |
− | | + | 鞅数学形式化了公平博弈的概念,<ref name=“Ross1996page295”>{cite book | author=Sheldon M.Ross | title=random processes | url=https://books.google.com/books?id=ImUPAQAAMAAJ | year=1996 | publisher=Wiley | isbn=978-0-471-12062-9 | page=295}</ref>它们最初的开发目的是表明不可能赢得一场公平的比赛。<ref name=“Steele2012page11”/>但现在它们被用于许多概率领域,这是研究它们的主要原因之一=https://books.google.com/books?id=fsgkbaaqbaj&pg=PR4 | year=2012 | publisher=Springer Science&Business Media | isbn=978-1-4684-9305-4 | page=11}</ref><ref name=“Kallenberg 2002page96”>{cite book |作者=Olav Kallenberg | title=Foundations of Modern Probability |网址=https://books.google.com/books?id=L6fhXh13OyMC | year=2002 | publisher=Springer Science&Business Media | isbn=978-0-387-95313-7 | pages=96}</ref>许多概率问题已经通过在问题中找到鞅并加以研究而得到解决。<ref name=“Steele2012page371”>{cite book | author=J.Michael Steele| title=随机微积分和金融应用程序| url=https://books.google.com/books?id=fsgkbaaqbaj&pg=PR4 | year=2012 | publisher=Springer Science&Business Media | isbn=978-1-4684-9305-4 | page=371}}</ref>鞅会收敛,因此通常使用它们来推导收敛结果,{124steelography=“2012steelography”{124steelography=“2012steelography”/>=https://books.google.com/books?id=fsgkbaaqbaj&pg=PR4 | year=2012 | publisher=Springer Science&Business Media | isbn=978-1-4684-9305-4 | page=22}</ref><ref name=“grimmetttstirzaker2001page336”>{引用图书| author1=Geoffrey Grimmett | author2=David Stirzaker | title=概率和随机过程| url=https://books.google.com/books?id=G3ig-0M4wSIC |年=2001 | publisher=OUP Oxford | isbn=978-0-19-857222-0 | page=336}</ref> |
| | | |
| Martingales have many applications in statistics, but it has been remarked that its use and application are not as widespread as it could be in the field of statistics, particularly statistical inference.<ref name="GlassermanKou2006">{{cite journal|last1=Glasserman|first1=Paul|last2=Kou|first2=Steven|title=A Conversation with Chris Heyde|journal=Statistical Science|volume=21|issue=2|year=2006|pages=292, 293|issn=0883-4237|doi=10.1214/088342306000000088|arxiv=math/0609294|bibcode=2006math......9294G}}</ref> They have found applications in areas in probability theory such as queueing theory and Palm calculus<ref name="BaccelliBremaud2013">{{cite book|author1=Francois Baccelli|author2=Pierre Bremaud|title=Elements of Queueing Theory: Palm Martingale Calculus and Stochastic Recurrences|url=https://books.google.com/books?id=DH3pCAAAQBAJ&pg=PR2|year=2013|publisher=Springer Science & Business Media|isbn=978-3-662-11657-9}}</ref> and other fields such as economics<ref name="HallHeyde2014pageX">{{cite book|author1=P. Hall|author2=C. C. Heyde|title=Martingale Limit Theory and Its Application|url=https://books.google.com/books?id=gqriBQAAQBAJ&pg=PR10|year= 2014|publisher=Elsevier Science|isbn=978-1-4832-6322-9|page=x}}</ref> and finance.<ref name="MusielaRutkowski2006"/> | | Martingales have many applications in statistics, but it has been remarked that its use and application are not as widespread as it could be in the field of statistics, particularly statistical inference.<ref name="GlassermanKou2006">{{cite journal|last1=Glasserman|first1=Paul|last2=Kou|first2=Steven|title=A Conversation with Chris Heyde|journal=Statistical Science|volume=21|issue=2|year=2006|pages=292, 293|issn=0883-4237|doi=10.1214/088342306000000088|arxiv=math/0609294|bibcode=2006math......9294G}}</ref> They have found applications in areas in probability theory such as queueing theory and Palm calculus<ref name="BaccelliBremaud2013">{{cite book|author1=Francois Baccelli|author2=Pierre Bremaud|title=Elements of Queueing Theory: Palm Martingale Calculus and Stochastic Recurrences|url=https://books.google.com/books?id=DH3pCAAAQBAJ&pg=PR2|year=2013|publisher=Springer Science & Business Media|isbn=978-3-662-11657-9}}</ref> and other fields such as economics<ref name="HallHeyde2014pageX">{{cite book|author1=P. Hall|author2=C. C. Heyde|title=Martingale Limit Theory and Its Application|url=https://books.google.com/books?id=gqriBQAAQBAJ&pg=PR10|year= 2014|publisher=Elsevier Science|isbn=978-1-4832-6322-9|page=x}}</ref> and finance.<ref name="MusielaRutkowski2006"/> |
| | | |
| + | 鞅在统计学中有许多应用,但有人指出,它的使用和应用并不像它在统计学领域那样广泛,尤其是统计推断,293 | issn=0883-4237 | doi=10.1214/088342306000000088 | arxiv=math/0609294 | bibcode=2006math……9294G}</ref>他们在排队论和棕榈微积分等概率论领域找到了应用微积分与随机循环=https://books.google.com/books?id=dh3pcaaqbaj&pg=PR2 | year=2013 | publisher=Springer Science&Business Media | isbn=978-3-662-11657-9}</ref>和其他领域,如经济学<ref name=“HallHeyde2014pageX”{cite book | author1=P.Hall | author2=C.C.Heyde | title=鞅极限理论及其应用| url=https://books.google.com/books?id=gqriBQAAQBAJ&pg=PR10 | year=2014 | publisher=Elsevier Science | isbn=978-1-4832-6322-9 | page=x}</ref>和财务。<ref name=“Musielarukowski2006”/> |
| | | |
− | | + | ===Lévy process莱维过程=== |
− | ===Lévy process=== | |
| | | |
| {{Main|Lévy process}} | | {{Main|Lévy process}} |
| + | {{Main | Lévy过程}} |
| | | |
| Lévy processes are types of stochastic processes that can be considered as generalizations of random walks in continuous time.<ref name="Applebaum2004page1337"/><ref name="Bertoin1998pageVIII">{{cite book|author=Jean Bertoin|title=Lévy Processes|url=https://books.google.com/books?id=ftcsQgMp5cUC&pg=PR8|year=1998|publisher=Cambridge University Press|isbn=978-0-521-64632-1|page=viii}}</ref> These processes have many applications in fields such as finance, fluid mechanics, physics and biology.<ref name="Applebaum2004page1336">{{cite journal|last1=Applebaum|first1=David|title=Lévy processes: From probability to finance and quantum groups|journal=Notices of the AMS|volume=51|issue=11|year=2004|pages=1336}}</ref><ref name="ApplebaumBook2004page69">{{cite book|author=David Applebaum|title=Lévy Processes and Stochastic Calculus|url=https://books.google.com/books?id=q7eDUjdJxIkC|year=2004|publisher=Cambridge University Press|isbn=978-0-521-83263-2|page=69}}</ref> The main defining characteristics of these processes are their stationarity and independence properties, so they were known as ''processes with stationary and independent increments''. In other words, a stochastic process <math>X</math> is a Lévy process if for <math>n</math> non-negatives numbers, <math>0\leq t_1\leq \dots \leq t_n</math>, the corresponding <math>n-1</math> increments | | Lévy processes are types of stochastic processes that can be considered as generalizations of random walks in continuous time.<ref name="Applebaum2004page1337"/><ref name="Bertoin1998pageVIII">{{cite book|author=Jean Bertoin|title=Lévy Processes|url=https://books.google.com/books?id=ftcsQgMp5cUC&pg=PR8|year=1998|publisher=Cambridge University Press|isbn=978-0-521-64632-1|page=viii}}</ref> These processes have many applications in fields such as finance, fluid mechanics, physics and biology.<ref name="Applebaum2004page1336">{{cite journal|last1=Applebaum|first1=David|title=Lévy processes: From probability to finance and quantum groups|journal=Notices of the AMS|volume=51|issue=11|year=2004|pages=1336}}</ref><ref name="ApplebaumBook2004page69">{{cite book|author=David Applebaum|title=Lévy Processes and Stochastic Calculus|url=https://books.google.com/books?id=q7eDUjdJxIkC|year=2004|publisher=Cambridge University Press|isbn=978-0-521-83263-2|page=69}}</ref> The main defining characteristics of these processes are their stationarity and independence properties, so they were known as ''processes with stationary and independent increments''. In other words, a stochastic process <math>X</math> is a Lévy process if for <math>n</math> non-negatives numbers, <math>0\leq t_1\leq \dots \leq t_n</math>, the corresponding <math>n-1</math> increments |
| + | |
| + | Lévy过程是随机过程的一种类型,可以看作是连续时间中随机游动的推广=https://books.google.com/books?id=ftcsQgMp5cUC&pg=PR8 | year=1998 | publisher=Cambridge University Press | isbn=978-0-521-64632-1 | page=viii}}</ref>这些过程在金融、流体力学等领域有着广泛的应用,自同年以来,自本次自微积分|网址=https://books.google.com/books?id=q7eDUjdJxIkC | year=2004 | publisher=Cambridge University Press | isbn=978-0-521-83263-2 | page=69}</ref>这些过程的主要特征是其平稳性和独立性,因此被称为“具有平稳和独立增量的过程”。换句话说,一个随机过程<math>X</math>是一个Lévy过程,如果<math>n</math>非负数,<math>0\leq t_1\leq\dots\leq t_n</math>相应的<math>n-1</math>递增 |
| | | |
| <center><math> | | <center><math> |
第957行: |
第966行: |
| | | |
| are all independent of each other, and the distribution of each increment only depends on the difference in time.<ref name="Applebaum2004page1337"/> | | are all independent of each other, and the distribution of each increment only depends on the difference in time.<ref name="Applebaum2004page1337"/> |
| + | 它们彼此独立,每个增量的分布只取决于时间的差异。<ref name=“Applebaum2004page1337”/> |
| | | |
| <!-- Tips for referencing: | | <!-- Tips for referencing: |
第965行: |
第975行: |
| | | |
| A Lévy process can be defined such that its state space is some abstract mathematical space, such as a [[Banach space]], but the processes are often defined so that they take values in Euclidean space. The index set is the non-negative numbers, so <math> I= [0,\infty) </math>, which gives the interpretation of time. Important stochastic processes such as the Wiener process, the homogeneous Poisson process (in one dimension), and [[subordinator (mathematics)|subordinators]] are all Lévy processes.<ref name="Applebaum2004page1337"/><ref name="Bertoin1998pageVIII"/> | | A Lévy process can be defined such that its state space is some abstract mathematical space, such as a [[Banach space]], but the processes are often defined so that they take values in Euclidean space. The index set is the non-negative numbers, so <math> I= [0,\infty) </math>, which gives the interpretation of time. Important stochastic processes such as the Wiener process, the homogeneous Poisson process (in one dimension), and [[subordinator (mathematics)|subordinators]] are all Lévy processes.<ref name="Applebaum2004page1337"/><ref name="Bertoin1998pageVIII"/> |
| + | 一个Lévy过程可以被定义为它的状态空间是一些抽象的数学空间,例如[[Banach空间]],但是过程通常被定义为在欧几里德空间中取值。索引集是非负数,因此<math>I=[0,\infty)</math>,它给出了时间的解释。重要的随机过程,如维纳过程、齐次泊松过程(一维)和[[从属(数学)|从属]]都是Lévy过程。<ref name=“Applebaum2004page1337”/><ref name=“Bertoin1998pageVIII”/> |
| | | |
| For books, use: | | For books, use: |
第972行: |
第983行: |
| | | |
| | | |
− | ===Random field=== | + | ===Random field随机场=== |
| | | |
| {{Main|Random field}} | | {{Main|Random field}} |
| + | {{Main |随机场域}} |
| | | |
| A random field is a collection of random variables indexed by a <math>n</math>-dimensional Euclidean space or some manifold. In general, a random field can be considered an example of a stochastic or random process, where the index set is not necessarily a subset of the real line.<ref name="AdlerTaylor2009page7"/> But there is a convention that an indexed collection of random variables is called a random field when the index has two or more dimensions.<ref name="GikhmanSkorokhod1969page1"/><ref name="Lamperti1977page1"/><ref name="KoralovSinai2007page171">{{cite book|author1=Leonid Koralov|author2=Yakov G. Sinai|title=Theory of Probability and Random Processes|url=https://books.google.com/books?id=tlWOphOFRgwC|year=2007|publisher=Springer Science & Business Media|isbn=978-3-540-68829-7|page=171}}</ref> If the specific definition of a stochastic process requires the index set to be a subset of the real line, then the random field can be considered as a generalization of stochastic process.<ref name="ApplebaumBook2004page19">{{cite book|author=David Applebaum|title=Lévy Processes and Stochastic Calculus|url=https://books.google.com/books?id=q7eDUjdJxIkC|year=2004|publisher=Cambridge University Press|isbn=978-0-521-83263-2|page=19}}</ref> | | A random field is a collection of random variables indexed by a <math>n</math>-dimensional Euclidean space or some manifold. In general, a random field can be considered an example of a stochastic or random process, where the index set is not necessarily a subset of the real line.<ref name="AdlerTaylor2009page7"/> But there is a convention that an indexed collection of random variables is called a random field when the index has two or more dimensions.<ref name="GikhmanSkorokhod1969page1"/><ref name="Lamperti1977page1"/><ref name="KoralovSinai2007page171">{{cite book|author1=Leonid Koralov|author2=Yakov G. Sinai|title=Theory of Probability and Random Processes|url=https://books.google.com/books?id=tlWOphOFRgwC|year=2007|publisher=Springer Science & Business Media|isbn=978-3-540-68829-7|page=171}}</ref> If the specific definition of a stochastic process requires the index set to be a subset of the real line, then the random field can be considered as a generalization of stochastic process.<ref name="ApplebaumBook2004page19">{{cite book|author=David Applebaum|title=Lévy Processes and Stochastic Calculus|url=https://books.google.com/books?id=q7eDUjdJxIkC|year=2004|publisher=Cambridge University Press|isbn=978-0-521-83263-2|page=19}}</ref> |
| | | |
− | | + | 随机场是由一个<math>n</math>维欧几里德空间或流形索引的随机变量的集合。一般来说,随机场可以看作是随机过程的一个例子,其中,索引集不一定是实行的子集。<ref name=“adlertaylor2009 page7”/>但是有一个约定,当索引具有两个或多个维度时,随机变量的索引集合称为随机字段。<ref name=“GikhmanSkorokhod1969page1”/><ref name=“Lamperti1977page1”/><ref name=“Lamperti1977page1”/><ref name=“GikhmanSkorokhod1969page1”/>name=“KoralovSinai2007page171”>{cite book | author1=Leonid Koralov | author2=Yakov G.Sinai | title=概率论与随机过程| url=https://books.google.com/books?id=tlWOphOFRgwC | year=2007 | publisher=Springer Science&Business Media | isbn=978-3-540-68829-7 | page=171}</ref>如果随机过程的具体定义要求索引集是实线的子集,那么随机场可以看作是随机过程的一个推广=https://books.google.com/books?id=q7eDUjdJxIkC | year=2004 | publisher=Cambridge University Press | isbn=978-0-521-83263-2 | page=19}</ref> |
| | | |
| Also use a web tool for getting book citation details via Google Books: | | Also use a web tool for getting book citation details via Google Books: |
第984行: |
第996行: |
| 还可以使用网络工具通过 Google Books 获取图书的引用细节: | | 还可以使用网络工具通过 Google Books 获取图书的引用细节: |
| | | |
− | ===Point process=== | + | ===Point process点过程=== |
| | | |
| {{Main|Point process}} | | {{Main|Point process}} |
| + | {{主|点过程}} |
| | | |
| http://reftag.appspot.com/ | | http://reftag.appspot.com/ |
第994行: |
第1,007行: |
| A point process is a collection of points randomly located on some mathematical space such as the real line, <math>n</math>-dimensional Euclidean space, or more abstract spaces. Sometimes the term ''point process'' is not preferred, as historically the word ''process'' denoted an evolution of some system in time, so a point process is also called a '''random point field'''.<ref name="ChiuStoyan2013page109">{{cite book|author1=Sung Nok Chiu|author2=Dietrich Stoyan|author3=Wilfrid S. Kendall|author4=Joseph Mecke|title=Stochastic Geometry and Its Applications|url=https://books.google.com/books?id=825NfM6Nc-EC|year=2013|publisher=John Wiley & Sons|isbn=978-1-118-65825-3|page=109}}</ref> There are different interpretations of a point process, such a random counting measure or a random set.<ref name="ChiuStoyan2013page108">{{cite book|author1=Sung Nok Chiu|author2=Dietrich Stoyan|author3=Wilfrid S. Kendall|author4=Joseph Mecke|title=Stochastic Geometry and Its Applications|url=https://books.google.com/books?id=825NfM6Nc-EC|year=2013|publisher=John Wiley & Sons|isbn=978-1-118-65825-3|page=108}}</ref><ref name="Haenggi2013page10">{{cite book|author=Martin Haenggi|title=Stochastic Geometry for Wireless Networks|url=https://books.google.com/books?id=CLtDhblwWEgC|year=2013|publisher=Cambridge University Press|isbn=978-1-107-01469-5|page=10}}</ref> Some authors regard a point process and stochastic process as two different objects such that a point process is a random object that arises from or is associated with a stochastic process,<ref name="DaleyVere-Jones2006page194">{{cite book|author1=D.J. Daley|author2=D. Vere-Jones|title=An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods|url=https://books.google.com/books?id=6Sv4BwAAQBAJ|year=2006|publisher=Springer Science & Business Media|isbn=978-0-387-21564-8|page=194}}</ref><ref name="CoxIsham1980page3">{{cite book|author1=D.R. Cox|author2=Valerie Isham|title=Point Processes|url=https://books.google.com/books?id=KWF2xY6s3PoC|year=1980|publisher=CRC Press|isbn=978-0-412-21910-8|page=3}}</ref> though it has been remarked that the difference between point processes and stochastic processes is not clear.<ref name="CoxIsham1980page3"/> | | A point process is a collection of points randomly located on some mathematical space such as the real line, <math>n</math>-dimensional Euclidean space, or more abstract spaces. Sometimes the term ''point process'' is not preferred, as historically the word ''process'' denoted an evolution of some system in time, so a point process is also called a '''random point field'''.<ref name="ChiuStoyan2013page109">{{cite book|author1=Sung Nok Chiu|author2=Dietrich Stoyan|author3=Wilfrid S. Kendall|author4=Joseph Mecke|title=Stochastic Geometry and Its Applications|url=https://books.google.com/books?id=825NfM6Nc-EC|year=2013|publisher=John Wiley & Sons|isbn=978-1-118-65825-3|page=109}}</ref> There are different interpretations of a point process, such a random counting measure or a random set.<ref name="ChiuStoyan2013page108">{{cite book|author1=Sung Nok Chiu|author2=Dietrich Stoyan|author3=Wilfrid S. Kendall|author4=Joseph Mecke|title=Stochastic Geometry and Its Applications|url=https://books.google.com/books?id=825NfM6Nc-EC|year=2013|publisher=John Wiley & Sons|isbn=978-1-118-65825-3|page=108}}</ref><ref name="Haenggi2013page10">{{cite book|author=Martin Haenggi|title=Stochastic Geometry for Wireless Networks|url=https://books.google.com/books?id=CLtDhblwWEgC|year=2013|publisher=Cambridge University Press|isbn=978-1-107-01469-5|page=10}}</ref> Some authors regard a point process and stochastic process as two different objects such that a point process is a random object that arises from or is associated with a stochastic process,<ref name="DaleyVere-Jones2006page194">{{cite book|author1=D.J. Daley|author2=D. Vere-Jones|title=An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods|url=https://books.google.com/books?id=6Sv4BwAAQBAJ|year=2006|publisher=Springer Science & Business Media|isbn=978-0-387-21564-8|page=194}}</ref><ref name="CoxIsham1980page3">{{cite book|author1=D.R. Cox|author2=Valerie Isham|title=Point Processes|url=https://books.google.com/books?id=KWF2xY6s3PoC|year=1980|publisher=CRC Press|isbn=978-0-412-21910-8|page=3}}</ref> though it has been remarked that the difference between point processes and stochastic processes is not clear.<ref name="CoxIsham1980page3"/> |
| | | |
− | | + | 点过程是随机分布在某些数学空间(如实线、<math>n</math>维欧几里德空间或更抽象的空间)上的点的集合。有时“点过程”一词并不可取,因为历史上“过程”一词表示某个系统在时间上的演变,因此,点过程也被称为“随机点域”。<ref name=“ChiuStoyan2013page109”>{cite book | author1=Sung Nok Chiu | author2=Dietrich Stoyan | author3=Wilfrid S.Kendall | author4=Joseph Mecke | title=随机几何及其应用| url=https://books.google.com/books?id=825NfM6Nc EC | year=2013 | publisher=John Wiley&Sons | isbn=978-1-118-65825-3 | page=109}</ref>点过程有不同的解释,这样一个随机计数度量或随机集。<ref name=“ChiuStoyan2013page108”>{cite book | author1=Sung Nok Chiu | author2=Dietrich Stoyan | author3=Wilfrid S.Kendall | author4=Joseph Mecke | title=随机几何及其应用=https://books.google.com/books?id=825NfM6Nc EC |年份=2013 | publisher=John Wiley&Sons | isbn=978-1-118-65825-3 | page=108}</ref><ref name=“Haenggi2013page10”>{cite book |作者=Martin Haenggi | title=无线网络的随机几何| url=https://books.google.com/books?id=CLtDhblwWEgC | year=2013 | publisher=Cambridge University Press | isbn=978-1-107-01469-5 | page=10}</ref>一些作者将点过程和随机过程视为两个不同的对象,因此点过程是随机过程产生或与随机过程相关联的随机对象,<ref name=“daleyviere-Jones 2006page194”>{cite book | author1=D.J.Daley | author2=D.Vere Jones | title=点过程理论导论:第一卷:基本理论与方法|网址=https://books.google.com/books?id=6Sv4BwAAQBAJ | year=2006 | publisher=Springer Science&Business Media | isbn=978-0-387-21564-8 | page=194}</ref><ref name=“CoxIsham1980page3”>{引用图书| author1=D.R.Cox | author2=Valerie Isham | title=Point Processes | url=https://books.google.com/books?id=KWF2xY6s3PoC | year=1980 | publisher=CRC Press | isbn=978-0-412-21910-8 | page=3}</ref>尽管已经注意到点过程和随机过程之间的区别并不清楚。<ref name=“CoxIsham1980page3”/> |
| | | |
| or article citation details via DOI numbers: | | or article citation details via DOI numbers: |
第1,002行: |
第1,015行: |
| Other authors consider a point process as a stochastic process, where the process is indexed by sets of the underlying space{{efn|In the context of point processes, the term "state space" can mean the space on which the point process is defined such as the real line,<ref name="Kingman1992page8">{{cite book|author=J. F. C. Kingman|title=Poisson Processes|url=https://books.google.com/books?id=VEiM-OtwDHkC|year=1992|publisher=Clarendon Press|isbn=978-0-19-159124-2|page=8}}</ref><ref name="MollerWaagepetersen2003page7">{{cite book|author1=Jesper Moller|author2=Rasmus Plenge Waagepetersen|title=Statistical Inference and Simulation for Spatial Point Processes|url=https://books.google.com/books?id=dBNOHvElXZ4C|year=2003|publisher=CRC Press|isbn=978-0-203-49693-0|page=7}}</ref> which corresponds to the index set in stochastic process terminology.}} on which it is defined, such as the real line or <math>n</math>-dimensional Euclidean space.<ref name="KarlinTaylor2012page31">{{cite book|author1=Samuel Karlin|author2=Howard E. Taylor|title=A First Course in Stochastic Processes|url=https://books.google.com/books?id=dSDxjX9nmmMC|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|page=31}}</ref><ref name="Schmidt2014page99">{{cite book|author=Volker Schmidt|title=Stochastic Geometry, Spatial Statistics and Random Fields: Models and Algorithms|url=https://books.google.com/books?id=brsUBQAAQBAJ&pg=PR5|date= 2014|publisher=Springer|isbn=978-3-319-10064-7|page=99}}</ref> Other stochastic processes such as renewal and counting processes are studied in the theory of point processes.<ref name="DaleyVere-Jones200">{{cite book|author1=D.J. Daley|author2=D. Vere-Jones|title=An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods|url=https://books.google.com/books?id=6Sv4BwAAQBAJ|year=2006|publisher=Springer Science & Business Media|isbn=978-0-387-21564-8}}</ref><ref name="CoxIsham1980">{{cite book|author1=D.R. Cox|author2=Valerie Isham|title=Point Processes|url=https://books.google.com/books?id=KWF2xY6s3PoC|year=1980|publisher=CRC Press|isbn=978-0-412-21910-8}}</ref> | | Other authors consider a point process as a stochastic process, where the process is indexed by sets of the underlying space{{efn|In the context of point processes, the term "state space" can mean the space on which the point process is defined such as the real line,<ref name="Kingman1992page8">{{cite book|author=J. F. C. Kingman|title=Poisson Processes|url=https://books.google.com/books?id=VEiM-OtwDHkC|year=1992|publisher=Clarendon Press|isbn=978-0-19-159124-2|page=8}}</ref><ref name="MollerWaagepetersen2003page7">{{cite book|author1=Jesper Moller|author2=Rasmus Plenge Waagepetersen|title=Statistical Inference and Simulation for Spatial Point Processes|url=https://books.google.com/books?id=dBNOHvElXZ4C|year=2003|publisher=CRC Press|isbn=978-0-203-49693-0|page=7}}</ref> which corresponds to the index set in stochastic process terminology.}} on which it is defined, such as the real line or <math>n</math>-dimensional Euclidean space.<ref name="KarlinTaylor2012page31">{{cite book|author1=Samuel Karlin|author2=Howard E. Taylor|title=A First Course in Stochastic Processes|url=https://books.google.com/books?id=dSDxjX9nmmMC|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|page=31}}</ref><ref name="Schmidt2014page99">{{cite book|author=Volker Schmidt|title=Stochastic Geometry, Spatial Statistics and Random Fields: Models and Algorithms|url=https://books.google.com/books?id=brsUBQAAQBAJ&pg=PR5|date= 2014|publisher=Springer|isbn=978-3-319-10064-7|page=99}}</ref> Other stochastic processes such as renewal and counting processes are studied in the theory of point processes.<ref name="DaleyVere-Jones200">{{cite book|author1=D.J. Daley|author2=D. Vere-Jones|title=An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods|url=https://books.google.com/books?id=6Sv4BwAAQBAJ|year=2006|publisher=Springer Science & Business Media|isbn=978-0-387-21564-8}}</ref><ref name="CoxIsham1980">{{cite book|author1=D.R. Cox|author2=Valerie Isham|title=Point Processes|url=https://books.google.com/books?id=KWF2xY6s3PoC|year=1980|publisher=CRC Press|isbn=978-0-412-21910-8}}</ref> |
| | | |
| + | 另一些作者认为点过程是一个随机过程,其中过程由一组底层空间{efn |索引;在点过程的上下文中,“状态空间”一词可以指定义点过程的空间,如实线,<ref name=“kingmann1992page8”>{cite book | author=J.F.C.Kingman | title=Poisson Processes |网址=https://books.google.com/books?id=VEiM OtwDHkC | year=1992 | publisher=Clarendon Press | isbn=978-0-19-159124-2 | page=8}</ref><ref name=“MollerWaagepetersen2003page7”>{cite book | author1=Jesper Moller | author2=Rasmus-Plenge Waagepetersen | title=空间点过程的统计推断和模拟| url=https://books.google.com/books?id=dBNOHvElXZ4C | year=2003 | publisher=CRCRC Press | isbn=978-0-203-49693-0 | page=7}</ref>其中与随机过程术语中的指标集相对应的指标集。}}其上定义它的地方,如实线或<数学>n</math>n</math>-维维的欧几里得空间。<ref name=“KarlintayRo2012Page31”>{本书|124;author1=Samuel Karlin | author2=Howard E Howard E.Howard E.Taylor | title=title=title=A随机过程第一课程|网址=https://books.google.com/books?id=dSDxjX9nmmMC | year=2012 | publisher=academical Press | isbn=978-0-08-057041-9 | page=31}</ref><ref name=“Schmidt2014page99”>{cite book | author=Volker-Schmidt | title=随机几何、空间统计和随机场:模型和算法| url=https://books.google.com/books?id=brsUBQAAQBAJ&pg=PR5 | date=2014 | publisher=Springer | isbn=978-3-319-10064-7 | page=99}</ref>其他随机过程,如更新和计数过程,在点过程理论中进行了研究一、基本理论与方法|网址=https://books.google.com/books?id=6Sv4BwAAQBAJ | year=2006 | publisher=Springer Science&Business Media | isbn=978-0-387-21564-8}</ref><ref name=“CoxIsham1980”>{cite book | author1=D.R.Cox | author2=Valerie Isham | title=Point processs|网址=https://books.google.com/books?id=KWF2xY6s3PoC |年=1980 |发行人=CRC出版社| isbn=978-0-412-21910-8}</ref> |
| | | |
| | | |
第1,008行: |
第1,022行: |
| Http://reftag.appspot.com/doiweb.py | | Http://reftag.appspot.com/doiweb.py |
| | | |
− | ==History== | + | ==History历史== |
| | | |
| | | |
第1,016行: |
第1,030行: |
| 有关其他来源,请参阅: WP: CITET | | 有关其他来源,请参阅: WP: CITET |
| | | |
− | ===Early probability theory=== | + | ===Early probability theory早期概率论=== |
| | | |
| Probability theory has its origins in games of chance, which have a long history, with some games being played thousands of years ago,<ref name=":1">{{Cite book|title=Markov Chains: From Theory to Implementation and Experimentation|last=Gagniuc|first=Paul A.|publisher=John Wiley & Sons|year=2017|isbn=978-1-119-38755-8|location=US|pages=1–2}}</ref><ref name="David1955">{{cite journal|last1=David|first1=F. N.|title=Studies in the History of Probability and Statistics I. Dicing and Gaming (A Note on the History of Probability)|journal=Biometrika|volume=42|issue=1/2|pages=1–15|year=1955|issn=0006-3444|doi=10.2307/2333419|jstor=2333419}}</ref> but very little analysis on them was done in terms of probability.<ref name=":1" /><ref name="Maistrov2014page1">{{cite book|author=L. E. Maistrov|title=Probability Theory: A Historical Sketch|url=https://books.google.com/books?id=2ZbiBQAAQBAJ&pg=PR9|year=2014|publisher=Elsevier Science|isbn=978-1-4832-1863-2|page=1}}</ref> The year 1654 is often considered the birth of probability theory when French mathematicians [[Pierre Fermat]] and [[Blaise Pascal]] had a written correspondence on probability, motivated by a [[Problem of points|gambling problem]].<ref name=":1" /><ref name="Seneta2006page1">{{cite book|last1=Seneta|first1=E.|title=Encyclopedia of Statistical Sciences|chapter=Probability, History of|year=2006|doi=10.1002/0471667196.ess2065.pub2|page=1|isbn=978-0471667193}}</ref><ref name="Tabak2014page24to26">{{cite book|author=John Tabak|title=Probability and Statistics: The Science of Uncertainty|url=https://books.google.com/books?id=h3WVqBPHboAC|year=2014|publisher=Infobase Publishing|isbn=978-0-8160-6873-9|pages=24–26}}</ref> But there was earlier mathematical work done on the probability of gambling games such as ''Liber de Ludo Aleae'' by [[Gerolamo Cardano]], written in the 16th century but posthumously published later in 1663.<ref name=":1" /><ref name="Bellhouse2005">{{cite journal|last1=Bellhouse|first1=David|title=Decoding Cardano's Liber de Ludo Aleae|journal=Historia Mathematica|volume=32|issue=2|year=2005|pages=180–202|issn=0315-0860|doi=10.1016/j.hm.2004.04.001|doi-access=free}}</ref> | | Probability theory has its origins in games of chance, which have a long history, with some games being played thousands of years ago,<ref name=":1">{{Cite book|title=Markov Chains: From Theory to Implementation and Experimentation|last=Gagniuc|first=Paul A.|publisher=John Wiley & Sons|year=2017|isbn=978-1-119-38755-8|location=US|pages=1–2}}</ref><ref name="David1955">{{cite journal|last1=David|first1=F. N.|title=Studies in the History of Probability and Statistics I. Dicing and Gaming (A Note on the History of Probability)|journal=Biometrika|volume=42|issue=1/2|pages=1–15|year=1955|issn=0006-3444|doi=10.2307/2333419|jstor=2333419}}</ref> but very little analysis on them was done in terms of probability.<ref name=":1" /><ref name="Maistrov2014page1">{{cite book|author=L. E. Maistrov|title=Probability Theory: A Historical Sketch|url=https://books.google.com/books?id=2ZbiBQAAQBAJ&pg=PR9|year=2014|publisher=Elsevier Science|isbn=978-1-4832-1863-2|page=1}}</ref> The year 1654 is often considered the birth of probability theory when French mathematicians [[Pierre Fermat]] and [[Blaise Pascal]] had a written correspondence on probability, motivated by a [[Problem of points|gambling problem]].<ref name=":1" /><ref name="Seneta2006page1">{{cite book|last1=Seneta|first1=E.|title=Encyclopedia of Statistical Sciences|chapter=Probability, History of|year=2006|doi=10.1002/0471667196.ess2065.pub2|page=1|isbn=978-0471667193}}</ref><ref name="Tabak2014page24to26">{{cite book|author=John Tabak|title=Probability and Statistics: The Science of Uncertainty|url=https://books.google.com/books?id=h3WVqBPHboAC|year=2014|publisher=Infobase Publishing|isbn=978-0-8160-6873-9|pages=24–26}}</ref> But there was earlier mathematical work done on the probability of gambling games such as ''Liber de Ludo Aleae'' by [[Gerolamo Cardano]], written in the 16th century but posthumously published later in 1663.<ref name=":1" /><ref name="Bellhouse2005">{{cite journal|last1=Bellhouse|first1=David|title=Decoding Cardano's Liber de Ludo Aleae|journal=Historia Mathematica|volume=32|issue=2|year=2005|pages=180–202|issn=0315-0860|doi=10.1016/j.hm.2004.04.001|doi-access=free}}</ref> |
| + | |
| + | 概率论起源于机会博弈,它有着悠久的历史,有些游戏在几千年前就已经开始了,{{引文图书〈title=马尔可夫链:从理论到实施和实验| last=Gagniuc | first=Paul A.;publisher=John Wiley&Sons | year=2017 | isbn=978-1-119-38755-8 |地理位置=美国|页面=1-1–2}}</ref><ref name=“David1955”{{引用杂志| last1=David | first1=F.N.| title=在研究中的研究在研究中的研究在研究中的研究中的研究|位置=位置=美国124;位置=美国概率统计史I.划片游戏和游戏(概率历史注注)| journal=Biometrika |volume=42 | issue=1/2 | pages=1-15年;year=1955 | issn=0006-3444;doi=10.2307/2333419;jstor=2333419}}</ref>但很少从概率的角度对其进行分析。<ref name=“:1”/><ref name=“Maistorv2014Page1”>{{ci书| ci书124; author=L.E.Maistorv Maistorv Maistorv Maistorv Maistorv Maistorv Maistorv Ma|标题=概率论:A历史素描|网址=https://books.google.com/books?id=2ZbiBQAAQBAJ&pg=PR9 | year=2014 | publisher=Elsevier Science | isbn=978-1-4832-1863-2 | page=1}</ref>当法国数学家[[Pierre Fermat]]和[[Blaise Pascal]]在概率论上有过书面通信时,1654年通常被认为是概率论的诞生,受[[点数问题|赌博问题].<ref name=“:1”/><ref name=“Seneta2006page1”>{cite book | last1=Seneta | first1=E.| title=统计科学百科全书| chapter=Probability,历史|年=2006 | doi=10.1002/0471667196.ess2065.pub2 | page=1 | isbn=978-0471667193}</ref><ref name=“Tabak2014page24to26”>{cite book | author=John Tabak | title=Probability and Statistics:不确定性科学| url=https://books.google.com/books?id=h3WVqBPHboAC | year=2014 | publisher=Infobase Publishing | isbn=978-0-8160-6873-9 | pages=24–26}</ref>但是早期有关于赌博游戏概率的数学研究,比如[[Gerolamo Cardano]]的“Liber de Ludo Aleae”,16世纪写于16世纪,死后于1663年发表。<ref name=“:1“/><ref name=“bellhous2005”>{〈cite journal | last1=Bellhouse | first1=David;title=解码Cardano's Liberde Ludo Aleaeaeae | journal=Historica Mathematica | volume=32;issue=2;year=2005 | Pages180–202 | issn=0315-0860 | doi=10.1016/j.hm 2004.2004.04.001 | jo180–202 | issn=10.202 doiaccess=free}}</ref> |
| | | |
| --> | | --> |
第1,028行: |
第1,044行: |
| After Cardano, [[Jakob Bernoulli]]{{efn|Also known as James or Jacques Bernoulli.<ref name="Hald2005page221">{{cite book|author=Anders Hald|title=A History of Probability and Statistics and Their Applications before 1750|url=https://books.google.com/books?id=pOQy6-qnVx8C|year=2005|publisher=John Wiley & Sons|isbn=978-0-471-72517-6|page=221}}</ref>}} wrote [[Ars Conjectandi]], which is considered a significant event in the history of probability theory.<ref name=":1" /> Bernoulli's book was published, also posthumously, in 1713 and inspired many mathematicians to study probability.<ref name=":1" /><ref name="Maistrov2014page56">{{cite book|author=L. E. Maistrov|title=Probability Theory: A Historical Sketch|url=https://books.google.com/books?id=2ZbiBQAAQBAJ&pg=PR9|year=2014|publisher=Elsevier Science|isbn=978-1-4832-1863-2|page=56}}</ref><ref name="Tabak2014page37">{{cite book|author=John Tabak|title=Probability and Statistics: The Science of Uncertainty|url=https://books.google.com/books?id=h3WVqBPHboAC|year=2014|publisher=Infobase Publishing|isbn=978-0-8160-6873-9|page=37}}</ref> But despite some renowned mathematicians contributing to probability theory, such as [[Pierre-Simon Laplace]], [[Abraham de Moivre]], [[Carl Gauss]], [[Siméon Poisson]] and [[Pafnuty Chebyshev]],<ref name="Chung1998">{{cite journal|last1=Chung|first1=Kai Lai|title=Probability and Doob|journal=The American Mathematical Monthly|volume=105|issue=1|pages=28–35|year=1998|issn=0002-9890|doi=10.2307/2589523|jstor=2589523}}</ref><ref name="Bingham2000">{{cite journal|last1=Bingham|first1=N.|title=Studies in the history of probability and statistics XLVI. Measure into probability: from Lebesgue to Kolmogorov|journal=Biometrika|volume=87|issue=1|year=2000|pages=145–156|issn=0006-3444|doi=10.1093/biomet/87.1.145}}</ref> most of the mathematical community{{efn|It has been remarked that a notable exception was the St Petersburg School in Russia, where mathematicians led by Chebyshev studied probability theory.<ref name="BenziBenzi2007">{{cite journal|last1=Benzi|first1=Margherita|last2=Benzi|first2=Michele|last3=Seneta|first3=Eugene|title=Francesco Paolo Cantelli. b. 20 December 1875 d. 21 July 1966|journal=International Statistical Review|volume=75|issue=2|year=2007|page=128|issn=0306-7734|doi=10.1111/j.1751-5823.2007.00009.x}}</ref>}} did not consider probability theory to be part of mathematics until the 20th century.<ref name="Chung1998"/><ref name="BenziBenzi2007"/><ref name="Doob1996">{{cite journal|last1=Doob|first1=Joseph L.|title=The Development of Rigor in Mathematical Probability (1900-1950)|journal=The American Mathematical Monthly|volume=103|issue=7|pages=586–595|year=1996|issn=0002-9890|doi=10.2307/2974673|jstor=2974673}}</ref><ref name="Cramer1976">{{cite journal|last1=Cramer|first1=Harald|title=Half a Century with Probability Theory: Some Personal Recollections|journal=The Annals of Probability|volume=4|issue=4|year=1976|pages=509–546|issn=0091-1798|doi=10.1214/aop/1176996025|doi-access=free}}</ref> | | After Cardano, [[Jakob Bernoulli]]{{efn|Also known as James or Jacques Bernoulli.<ref name="Hald2005page221">{{cite book|author=Anders Hald|title=A History of Probability and Statistics and Their Applications before 1750|url=https://books.google.com/books?id=pOQy6-qnVx8C|year=2005|publisher=John Wiley & Sons|isbn=978-0-471-72517-6|page=221}}</ref>}} wrote [[Ars Conjectandi]], which is considered a significant event in the history of probability theory.<ref name=":1" /> Bernoulli's book was published, also posthumously, in 1713 and inspired many mathematicians to study probability.<ref name=":1" /><ref name="Maistrov2014page56">{{cite book|author=L. E. Maistrov|title=Probability Theory: A Historical Sketch|url=https://books.google.com/books?id=2ZbiBQAAQBAJ&pg=PR9|year=2014|publisher=Elsevier Science|isbn=978-1-4832-1863-2|page=56}}</ref><ref name="Tabak2014page37">{{cite book|author=John Tabak|title=Probability and Statistics: The Science of Uncertainty|url=https://books.google.com/books?id=h3WVqBPHboAC|year=2014|publisher=Infobase Publishing|isbn=978-0-8160-6873-9|page=37}}</ref> But despite some renowned mathematicians contributing to probability theory, such as [[Pierre-Simon Laplace]], [[Abraham de Moivre]], [[Carl Gauss]], [[Siméon Poisson]] and [[Pafnuty Chebyshev]],<ref name="Chung1998">{{cite journal|last1=Chung|first1=Kai Lai|title=Probability and Doob|journal=The American Mathematical Monthly|volume=105|issue=1|pages=28–35|year=1998|issn=0002-9890|doi=10.2307/2589523|jstor=2589523}}</ref><ref name="Bingham2000">{{cite journal|last1=Bingham|first1=N.|title=Studies in the history of probability and statistics XLVI. Measure into probability: from Lebesgue to Kolmogorov|journal=Biometrika|volume=87|issue=1|year=2000|pages=145–156|issn=0006-3444|doi=10.1093/biomet/87.1.145}}</ref> most of the mathematical community{{efn|It has been remarked that a notable exception was the St Petersburg School in Russia, where mathematicians led by Chebyshev studied probability theory.<ref name="BenziBenzi2007">{{cite journal|last1=Benzi|first1=Margherita|last2=Benzi|first2=Michele|last3=Seneta|first3=Eugene|title=Francesco Paolo Cantelli. b. 20 December 1875 d. 21 July 1966|journal=International Statistical Review|volume=75|issue=2|year=2007|page=128|issn=0306-7734|doi=10.1111/j.1751-5823.2007.00009.x}}</ref>}} did not consider probability theory to be part of mathematics until the 20th century.<ref name="Chung1998"/><ref name="BenziBenzi2007"/><ref name="Doob1996">{{cite journal|last1=Doob|first1=Joseph L.|title=The Development of Rigor in Mathematical Probability (1900-1950)|journal=The American Mathematical Monthly|volume=103|issue=7|pages=586–595|year=1996|issn=0002-9890|doi=10.2307/2974673|jstor=2974673}}</ref><ref name="Cramer1976">{{cite journal|last1=Cramer|first1=Harald|title=Half a Century with Probability Theory: Some Personal Recollections|journal=The Annals of Probability|volume=4|issue=4|year=1976|pages=509–546|issn=0091-1798|doi=10.1214/aop/1176996025|doi-access=free}}</ref> |
| | | |
| + | 继Cardano之后,[[Jakob Bernoulli]]{efn也被称为James或Jacques Bernoulli。<ref name=“hald205page221”{cite book | author=Anders Hald | title=1750年前概率统计及其应用的历史=https://books.google.com/books?id=pOQy6-qnVx8C | year=2005 | publisher=John Wiley&Sons | isbn=978-0-471-72517-6 | page=221}</ref>}}写了[[Ars conquectandi]],这被认为是概率论史上的一个重大事件。<ref name=“:1”/>伯努利的书也在死后出版,1713年,激发了许多数学家研究概率=https://books.google.com/books?id=2ZbiBQAAQBAJ&pg=PR9 | year=2014 | publisher=Elsevier Science | isbn=978-1-4832-1863-2 | page=56}</ref><ref name=“Tabak2014page37”>{cite book |作者=John Tabak | title=Probability and Statistics:不确定性科学| url=https://books.google.com/books?id=h3WVqBPHboAC | year=2014 | publisher=Infobase Publishing | isbn=978-0-8160-6873-9 | page=37}</ref>但是尽管一些著名数学家对概率论做出了贡献,比如[[Pierre Simon Laplace]][[Abraham de Moivre]][[Carl Gauss]][[Siméon Poisson]]和[[Pafnuty Chebyshev]],[第124年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年期[年本年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年[年年[年[年[年[年[年[历史上的第一个概率=1241统计四十六。概率度量:从Lebesgue到Kolmogorov | journal=Biometrika | volume=87 | issn=1 | year=2000 | pages=145-156 | issn=0006-3444 | doi=10.1093/biomet/87.1.145}</ref>大多数数学界{efn}有人指出,俄罗斯的圣彼得堡学派是一个显著的例外,以切比雪夫为首的数学家研究概率论。b、 1875年12月20日d.1966年7月21日| journal=International statistics Review | volume=75 | issue=2 | year=2007 | page=128 | issn=0306-7734 | doi=10.1111/j.1751-5823.2007.00009.x}}</ref>}直到20世纪才将概率论视为数学的一部分。<ref name=“Chung1998”/><ref name=“benzi2007”/><ref name=“Doob1996”>{第一次1=Joseph L.| title=发展严谨在数学概率中的严谨发展(1900-1950年)| journal=美国数学月刊| volume=103 | issue=7 | pages=586–595 | year=1996 | issn=0002-9890 | doi=10.2307/2974673 | jstor=2974673 | jstor=2974673}}</ref ref name=“Cramer1976”>{引用journal journal | last1=Cramer Cramer1976{引用journal | last1 124; | first1=Harald | title=半个世纪概率论:一些个人回忆 |
| | | |
| + | ===Statistical mechanics统计力学=== |
| | | |
− | ===Statistical mechanics=== | + | In the physical sciences, scientists developed in the 19th century the discipline of [[statistical mechanics]], where physical systems, such as containers filled with gases, can be regarded or treated mathematically as collections of many moving particles. Although there were attempts to incorporate randomness into statistical physics by some scientists, such as [[Rudolf Clausius]], most of the work had little or no randomness.<ref name="Truesdell1975page22">{{cite journal|last1=Truesdell|first1=C.|title=Early kinetic theories of gases|journal=Archive for History of Exact Sciences|volume=15|issue=1|year=1975|pages=22–23|issn=0003-9519|doi=10.1007/BF00327232}}</ref><ref name="Brush1967page150">{{cite journal|last1=Brush|first1=Stephen G.|title=Foundations of statistical mechanics 1845?1915|journal=Archive for History of Exact Sciences|volume=4|issue=3|year=1967|pages=150–151|issn=0003-9519|doi=10.1007/BF00412958}}</ref> |
| | | |
− | In the physical sciences, scientists developed in the 19th century the discipline of [[statistical mechanics]], where physical systems, such as containers filled with gases, can be regarded or treated mathematically as collections of many moving particles. Although there were attempts to incorporate randomness into statistical physics by some scientists, such as [[Rudolf Clausius]], most of the work had little or no randomness.<ref name="Truesdell1975page22">{{cite journal|last1=Truesdell|first1=C.|title=Early kinetic theories of gases|journal=Archive for History of Exact Sciences|volume=15|issue=1|year=1975|pages=22–23|issn=0003-9519|doi=10.1007/BF00327232}}</ref><ref name="Brush1967page150">{{cite journal|last1=Brush|first1=Stephen G.|title=Foundations of statistical mechanics 1845?1915|journal=Archive for History of Exact Sciences|volume=4|issue=3|year=1967|pages=150–151|issn=0003-9519|doi=10.1007/BF00412958}}</ref>
| + | 在物理科学中,科学家们在19世纪发展了[[统计力学]]这门学科,在这个学科中,物理系统,例如装满气体的容器,可以从数学上看作或处理为许多运动粒子的集合。尽管有些科学家试图将随机性纳入统计物理学,比如[[Rudolf Clausius]],大部分工作几乎没有或几乎没有随机性。<ref name=“Truesdell1975page22”>{{{cite journal 124; last1=Truesdell | first 1=C.;title=早期气体动力学理论气体;journal=Archive for History of Exact科学科学史| volume=15 | issue=1 | year=1975;pages22–23 | issn=0003-9519 | doi=10.1007/bf003272232}}</ref name=“Brus1961967page150”{{ref ref name=“Brus1961967page150”[页150”[[[[[{引用journal | last1=Brush | first1=Stephen G.| title=统计力学基础1845?1915年|期刊=精确科学史档案|卷=4 |问题=3 |年=1967 |页=150–151 | issn=0003-9519 | doi=10.1007/BF00412958}</ref> |
| | | |
| This changed in 1859 when [[James Clerk Maxwell]] contributed significantly to the field, more specifically, to the kinetic theory of gases, by presenting work where he assumed the gas particles move in random directions at random velocities.<ref name="Truesdell1975page31">{{cite journal|last1=Truesdell|first1=C.|title=Early kinetic theories of gases|journal=Archive for History of Exact Sciences|volume=15|issue=1|year=1975|pages=31–32|issn=0003-9519|doi=10.1007/BF00327232}}</ref><ref name="Brush1958">{{cite journal|last1=Brush|first1=S.G.|title=The development of the kinetic theory of gases IV. Maxwell|journal=Annals of Science|volume=14|issue=4|year=1958|pages=243–255|issn=0003-3790|doi=10.1080/00033795800200147}}</ref> The kinetic theory of gases and statistical physics continued to be developed in the second half of the 19th century, with work done chiefly by Clausius, [[Ludwig Boltzmann]] and [[Josiah Gibbs]], which would later have an influence on [[Albert Einstein]]'s mathematical model for [[Brownian movement]].<ref name="Brush1968page15">{{cite journal|last1=Brush|first1=Stephen G.|title=A history of random processes|journal=Archive for History of Exact Sciences|volume=5|issue=1|year=1968|pages=15–16|issn=0003-9519|doi=10.1007/BF00328110}}</ref> | | This changed in 1859 when [[James Clerk Maxwell]] contributed significantly to the field, more specifically, to the kinetic theory of gases, by presenting work where he assumed the gas particles move in random directions at random velocities.<ref name="Truesdell1975page31">{{cite journal|last1=Truesdell|first1=C.|title=Early kinetic theories of gases|journal=Archive for History of Exact Sciences|volume=15|issue=1|year=1975|pages=31–32|issn=0003-9519|doi=10.1007/BF00327232}}</ref><ref name="Brush1958">{{cite journal|last1=Brush|first1=S.G.|title=The development of the kinetic theory of gases IV. Maxwell|journal=Annals of Science|volume=14|issue=4|year=1958|pages=243–255|issn=0003-3790|doi=10.1080/00033795800200147}}</ref> The kinetic theory of gases and statistical physics continued to be developed in the second half of the 19th century, with work done chiefly by Clausius, [[Ludwig Boltzmann]] and [[Josiah Gibbs]], which would later have an influence on [[Albert Einstein]]'s mathematical model for [[Brownian movement]].<ref name="Brush1968page15">{{cite journal|last1=Brush|first1=Stephen G.|title=A history of random processes|journal=Archive for History of Exact Sciences|volume=5|issue=1|year=1968|pages=15–16|issn=0003-9519|doi=10.1007/BF00328110}}</ref> |
| | | |
| + | 这一点在1859年发生了变化,当时[[James clark Maxwell]]对该领域做出了重大贡献,更具体地说,是对气体动力学理论的贡献,通过介绍他的工作,他假设气体粒子以随机速度随机方向移动name=“Brush1958”>{cite journal | last1=Brush | first1=S.G.| title=气体动力学理论的发展IV.麦克斯韦期刊=科学年鉴|卷=14 |问题=4 |年份=1958 |页数=243–255 | issn=0003-3790 | doi=10.1080/0003379580020147}}</ref>气体动力学理论和统计物理在下半年继续发展19世纪,克劳修斯,[[Ludwig Boltzmann]]和[[Josiah Gibbs]]主要完成的工作,后来影响到[[阿尔伯特爱因斯坦]]的[[布朗运动]][[布朗运动]]的数学模型数学模型。<ref name=“brus1961968page15”>{{cite journal | last1=Brush;first1=斯蒂芬G.;title=随机过程历史的历史;journal=journal=ArchiForHistory of EquaScience | volume=5;issue=1 | year=1968年| pages15–16 | issn=124;issn=0003-9519;doi=10.1007/BF00328110}}}}</ref</ref<在 |
| | | |
− | | + | ===Measure theory and probability theory测度论与概率论=== |
− | ===Measure theory and probability theory=== | |
| | | |
| At the [[International Congress of Mathematicians]] in [[Paris]] in 1900, [[David Hilbert]] presented a list of [[Hilbert's problems|mathematical problems]], where his sixth problem asked for a mathematical treatment of physics and probability involving [[axiom]]s.<ref name="Bingham2000"/> Around the start of the 20th century, mathematicians developed measure theory, a branch of mathematics for studying integrals of mathematical functions, where two of the founders were French mathematicians, [[Henri Lebesgue]] and [[Émile Borel]]. In 1925 another French mathematician [[Paul Lévy (mathematician)|Paul Lévy]] published the first probability book that used ideas from measure theory.<ref name="Bingham2000"/> | | At the [[International Congress of Mathematicians]] in [[Paris]] in 1900, [[David Hilbert]] presented a list of [[Hilbert's problems|mathematical problems]], where his sixth problem asked for a mathematical treatment of physics and probability involving [[axiom]]s.<ref name="Bingham2000"/> Around the start of the 20th century, mathematicians developed measure theory, a branch of mathematics for studying integrals of mathematical functions, where two of the founders were French mathematicians, [[Henri Lebesgue]] and [[Émile Borel]]. In 1925 another French mathematician [[Paul Lévy (mathematician)|Paul Lévy]] published the first probability book that used ideas from measure theory.<ref name="Bingham2000"/> |
| | | |
− | | + | 1900年在巴黎举行的[[国际数学家大会]]上,[[David Hilbert]]提出了一份[[Hilbert问题|数学问题]]的清单,其中他的第六个问题要求对涉及[[公理]]的物理和概率进行数学处理。<ref name=“Bingham2000”/>大约在20世纪初,数学家发展了测量理论,这是研究数学函数积分的数学分支,其中两位创始人是法国数学家[[Henri Lebesgue]]和[[Émile Borel]]。1925年,另一位法国数学家[[Paul Lévy(数学家)| Paul Lévy]]出版了第一本使用测度论思想的概率论书籍 |
| | | |
| In 1920s fundamental contributions to probability theory were made in the Soviet Union by mathematicians such as [[Sergei Bernstein]], [[Aleksandr Khinchin]],{{efn|The name Khinchin is also written in (or transliterated into) English as Khintchine.<ref name="Doob1934">{{cite journal|last1=Doob|first1=Joseph|title=Stochastic Processes and Statistics|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=20|issue=6|year=1934|pages=376–379|doi=10.1073/pnas.20.6.376|pmid=16587907|pmc=1076423|bibcode=1934PNAS...20..376D}}</ref>}} and [[Andrei Kolmogorov]].<ref name="Cramer1976"/> Kolmogorov published in 1929 his first attempt at presenting a mathematical foundation, based on measure theory, for probability theory.<ref name="KendallBatchelor1990page33">{{cite journal|last1=Kendall|first1=D. G.|last2=Batchelor|first2=G. K.|last3=Bingham|first3=N. H.|last4=Hayman|first4=W. K.|last5=Hyland|first5=J. M. E.|last6=Lorentz|first6=G. G.|last7=Moffatt|first7=H. K.|last8=Parry|first8=W.|last9=Razborov|first9=A. A.|last10=Robinson|first10=C. A.|last11=Whittle|first11=P.|title=Andrei Nikolaevich Kolmogorov (1903–1987)|journal=Bulletin of the London Mathematical Society|volume=22|issue=1|year=1990|page=33|issn=0024-6093|doi=10.1112/blms/22.1.31}}</ref> In the early 1930s Khinchin and Kolmogorov set up probability seminars, which were attended by researchers such as [[Eugene Slutsky]] and [[Nikolai Smirnov (mathematician)|Nikolai Smirnov]],<ref name="Vere-Jones2006page1">{{cite book|last1=Vere-Jones|first1=David|title=Encyclopedia of Statistical Sciences|chapter=Khinchin, Aleksandr Yakovlevich|page=1|year=2006|doi=10.1002/0471667196.ess6027.pub2|isbn=978-0471667193}}</ref> and Khinchin gave the first mathematical definition of a stochastic process as a set of random variables indexed by the real line.<ref name="Doob1934"/><ref name="Vere-Jones2006page4">{{cite book|last1=Vere-Jones|first1=David|title=Encyclopedia of Statistical Sciences|chapter=Khinchin, Aleksandr Yakovlevich|page=4|year=2006|doi=10.1002/0471667196.ess6027.pub2|isbn=978-0471667193}}</ref>{{efn|Doob, when citing Khinchin, uses the term 'chance variable', which used to be an alternative term for 'random variable'.<ref name="Snell2005">{{cite journal|last1=Snell|first1=J. Laurie|title=Obituary: Joseph Leonard Doob|journal=Journal of Applied Probability|volume=42|issue=1|year=2005|page=251|issn=0021-9002|doi=10.1239/jap/1110381384|doi-access=free}}</ref> }} | | In 1920s fundamental contributions to probability theory were made in the Soviet Union by mathematicians such as [[Sergei Bernstein]], [[Aleksandr Khinchin]],{{efn|The name Khinchin is also written in (or transliterated into) English as Khintchine.<ref name="Doob1934">{{cite journal|last1=Doob|first1=Joseph|title=Stochastic Processes and Statistics|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=20|issue=6|year=1934|pages=376–379|doi=10.1073/pnas.20.6.376|pmid=16587907|pmc=1076423|bibcode=1934PNAS...20..376D}}</ref>}} and [[Andrei Kolmogorov]].<ref name="Cramer1976"/> Kolmogorov published in 1929 his first attempt at presenting a mathematical foundation, based on measure theory, for probability theory.<ref name="KendallBatchelor1990page33">{{cite journal|last1=Kendall|first1=D. G.|last2=Batchelor|first2=G. K.|last3=Bingham|first3=N. H.|last4=Hayman|first4=W. K.|last5=Hyland|first5=J. M. E.|last6=Lorentz|first6=G. G.|last7=Moffatt|first7=H. K.|last8=Parry|first8=W.|last9=Razborov|first9=A. A.|last10=Robinson|first10=C. A.|last11=Whittle|first11=P.|title=Andrei Nikolaevich Kolmogorov (1903–1987)|journal=Bulletin of the London Mathematical Society|volume=22|issue=1|year=1990|page=33|issn=0024-6093|doi=10.1112/blms/22.1.31}}</ref> In the early 1930s Khinchin and Kolmogorov set up probability seminars, which were attended by researchers such as [[Eugene Slutsky]] and [[Nikolai Smirnov (mathematician)|Nikolai Smirnov]],<ref name="Vere-Jones2006page1">{{cite book|last1=Vere-Jones|first1=David|title=Encyclopedia of Statistical Sciences|chapter=Khinchin, Aleksandr Yakovlevich|page=1|year=2006|doi=10.1002/0471667196.ess6027.pub2|isbn=978-0471667193}}</ref> and Khinchin gave the first mathematical definition of a stochastic process as a set of random variables indexed by the real line.<ref name="Doob1934"/><ref name="Vere-Jones2006page4">{{cite book|last1=Vere-Jones|first1=David|title=Encyclopedia of Statistical Sciences|chapter=Khinchin, Aleksandr Yakovlevich|page=4|year=2006|doi=10.1002/0471667196.ess6027.pub2|isbn=978-0471667193}}</ref>{{efn|Doob, when citing Khinchin, uses the term 'chance variable', which used to be an alternative term for 'random variable'.<ref name="Snell2005">{{cite journal|last1=Snell|first1=J. Laurie|title=Obituary: Joseph Leonard Doob|journal=Journal of Applied Probability|volume=42|issue=1|year=2005|page=251|issn=0021-9002|doi=10.1239/jap/1110381384|doi-access=free}}</ref> }} |
| | | |
| + | 20世纪20年代,苏联的数学家们对概率论做出了重大贡献,比如[[Sergei Bernstein]],[[Aleksandr Khinchin]],{{efn | Khinchin这个名字也用英语写成(或音译成)Khintchine。<ref name=“Doob1934”>{cite journal | last1=Doob | first1=Joseph | title=随机过程与统计| journal=美国国家科学院学报美国体积=20π=6π=376×379π=10.1073 /PNAS 20.637 6pMID=16587907πPMC=1076423 BiBCODE=1934 PNAS…20 .37 6D } </REF> }和[[Andrei Kolmogorov ] ] < 1929】命名为“CRAME1976”/Kolmogorov于1984年发表了基于测量理论的数学基础的首次尝试。概率论的概率论。<ref name=“KendallBatchelo1990 Page33”>{〈引用期刊| last1=Kendall | first1=D.G.| last2=Batchelor | first2=G.K.| last3=Bingham | first3=N.H.| last4=Hayman | first4=W.K.| last5=Hyland | first5=第一5=J.M.M.E.|124;最后6=洛伦兹|第一6=G.G.最后7=最后7=最后7=最后7=N.H.莫法特| first7=H.K.| last8=Parry | first8=W.| last9=Razborov | first9=A.A.| last10=Robinson | first10=C。A、 最后11=Whittle;first11=P.;title=AndreiNikolaevich Kolmogorov(1903-1987年)| journal=伦敦数学社会公报| volume=22 | issue=1 | year=1990年| page=33 | issn=0024-6093;doi=10.1112/blms/22.1.31}</ref>在20世纪30年代初,胡仁钦和科尔莫戈罗夫在20世纪30年代初建立了概率研讨会,这些研讨会由研究者参加,如[[Eugene Slutsky]]]等[Eugene Slutsky]等[Eugene Slutsky Slutsky slut在[和[[尼古拉斯米尔诺夫(数学家)尼古拉斯米尔诺夫(数学家)尼古拉斯米尔诺夫]],<ref name=“Vere-Jones2006page1”>{引用书| last1=Vere Jones;first1=David;title=统计科学百科全书|第章=章呼仁钦,Aleksandr yakovovlevich;page=1 |年=2006年124; doi=10.1002/0471667196.ess6027/076027 667196.ess6027.pub2 | isbn=978-0471667193}|第978-0471667193}}第}</ref>和钦钦给出了随机过程将随机过程作为一组随机变量的一组随机变量按实线编入索引。<ref name=“Doob1934”/>><ref name=“Vere-Jones2006page4”>{{cite book | last1=Vere Jones | first1=David | title=统计科学百科全书|第124;章章章=Khinchin,Aleksandr yakovolevicch | page=4 | year=2006年124; doi=10.1002/0471667196.ess6027/677196.ess6027.pub2 | isbn=978-0471667193}| 978-0471}</ref>{efn|嘟嘟,引用钦钦时,使用了“机会变量”这个词,以前是“随机变量”的替代名词。<ref name=“Snell2005”>{{{cite journal | last1=Snell | first 1=J.Laurie;title=讣告:Joseph Leonard Doob | journal=journal of Applied Probability;volume=42;issue=1 | year=2005年2005年| page=251 | issn=0021-9002 | doi=10.1239/jap/1110381384 | doi access=free}}</ref ref</ref ref</ref}}>}} |
| | | |
− | | + | ===Birth of modern probability theory现代概率论的诞生=== |
− | ===Birth of modern probability theory=== | |
| | | |
| In 1933 Andrei Kolmogorov published in German, his book on the foundations of probability theory titled ''Grundbegriffe der Wahrscheinlichkeitsrechnung'',{{efn|Later translated into English and published in 1950 as Foundations of the Theory of Probability<ref name="Bingham2000"/>}} where Kolmogorov used measure theory to develop an axiomatic framework for probability theory. The publication of this book is now widely considered to be the birth of modern probability theory, when the theories of probability and stochastic processes became parts of mathematics.<ref name="Bingham2000"/><ref name="Cramer1976"/> | | In 1933 Andrei Kolmogorov published in German, his book on the foundations of probability theory titled ''Grundbegriffe der Wahrscheinlichkeitsrechnung'',{{efn|Later translated into English and published in 1950 as Foundations of the Theory of Probability<ref name="Bingham2000"/>}} where Kolmogorov used measure theory to develop an axiomatic framework for probability theory. The publication of this book is now widely considered to be the birth of modern probability theory, when the theories of probability and stochastic processes became parts of mathematics.<ref name="Bingham2000"/><ref name="Cramer1976"/> |
| | | |
| + | 1933年,Andrei Kolmogorov在德国出版了一本关于概率论基础的书,名为“概率计算的基本概念”,后来翻译成英文,1950年出版,作为概率论的基础。这本书的出版现在被广泛认为是现代概率论的诞生,当时概率论和随机过程理论成为数学的一部分。 |
| | | |
| + | After the publication of Kolmogorov's book, further fundamental work on probability theory and stochastic processes was done by Khinchin and Kolmogorov as well as other mathematicians such as [[Joseph Doob]], [[William Feller]], [[Maurice Fréchet]], [[Paul Lévy (mathematician)|Paul Lévy]], [[Wolfgang Doeblin]], and [[Harald Cramér]].<ref name="Bingham2000"/><ref name="Cramer1976"/> |
| | | |
− | After the publication of Kolmogorov's book, further fundamental work on probability theory and stochastic processes was done by Khinchin and Kolmogorov as well as other mathematicians such as [[Joseph Doob]], [[William Feller]], [[Maurice Fréchet]], [[Paul Lévy (mathematician)|Paul Lévy]], [[Wolfgang Doeblin]], and [[Harald Cramér]].<ref name="Bingham2000"/><ref name="Cramer1976"/>
| + | 在科尔莫戈洛夫的书出版后,钦钦和科尔莫戈洛夫以及其他数学家如[[Joseph Doob]]、[[William Feller]]、[[Maurice Fréchet]]、[[Paul Lévy(数学家)| Paul Lévy]]、[[Wolfgang Doeblin]]等对概率论和随机过程进行了进一步的基础性工作,和[[Harald Cramér].<ref name=“Bingham2000”/><ref name=“Cramer1976”/> |
| | | |
| Decades later Cramér referred to the 1930s as the "heroic period of mathematical probability theory".<ref name="Cramer1976"/> [[World War II]] greatly interrupted the development of probability theory, causing, for example, the migration of Feller from [[Sweden]] to the [[United States|United States of America]]<ref name="Cramer1976"/> and the death of Doeblin, considered now a pioneer in stochastic processes.<ref name="Lindvall1991">{{cite journal|last1=Lindvall|first1=Torgny|title=W. Doeblin, 1915-1940|journal=The Annals of Probability|volume=19|issue=3|year=1991|pages=929–934|issn=0091-1798|doi=10.1214/aop/1176990329|doi-access=free}}</ref> | | Decades later Cramér referred to the 1930s as the "heroic period of mathematical probability theory".<ref name="Cramer1976"/> [[World War II]] greatly interrupted the development of probability theory, causing, for example, the migration of Feller from [[Sweden]] to the [[United States|United States of America]]<ref name="Cramer1976"/> and the death of Doeblin, considered now a pioneer in stochastic processes.<ref name="Lindvall1991">{{cite journal|last1=Lindvall|first1=Torgny|title=W. Doeblin, 1915-1940|journal=The Annals of Probability|volume=19|issue=3|year=1991|pages=929–934|issn=0091-1798|doi=10.1214/aop/1176990329|doi-access=free}}</ref> |
| | | |
− | | + | 几十年后,克莱姆把20世纪30年代称为“数学概率论的英雄时期”。<ref name=“Cramer1976”/>[[第二次世界大战]]极大地中断了概率论的发展,例如,Feller从[[瑞典]]迁移到[[美国]]<ref name=“Cramer1976”/>以及现在被认为是随机过程先驱的Doeblin之死,1915-1940;journal=The Annals of Probability | volume=19 | issue=3 | year=1991 | pages=929-934 | issn=0091-1798 | doi=10.1214/aop/1176990329 | doi access=free}</ref> |
| | | |
| [[File:Joseph Doob.jpg|thumb|right|Mathematician [[Joseph Doob]] did early work on the theory of stochastic processes, making fundamental contributions, particularly in the theory of martingales.<ref name="Getoor2009"/><ref name="Snell2005"/> His book ''Stochastic Processes'' is considered highly influential in the field of probability theory.<ref name="Bingham2005"/> ]] | | [[File:Joseph Doob.jpg|thumb|right|Mathematician [[Joseph Doob]] did early work on the theory of stochastic processes, making fundamental contributions, particularly in the theory of martingales.<ref name="Getoor2009"/><ref name="Snell2005"/> His book ''Stochastic Processes'' is considered highly influential in the field of probability theory.<ref name="Bingham2005"/> ]] |
| | | |
| + | [[文件:Joseph Doob.jpg|thumb |右|数学家[[Joseph Doob]]在随机过程理论方面做了早期的工作,做出了基本贡献,尤其是在鞅理论方面。<ref name=“Getoor2009”/><ref name=“Snell2005”/>他的书《随机过程》被认为在概率论领域具有很高的影响力。<refname=“Bingham2005”/>]] |
| | | |
− | | + | ===Stochastic processes after World War II二战后的随机过程=== |
− | ===Stochastic processes after World War II=== | |
| | | |
| After World War II the study of probability theory and stochastic processes gained more attention from mathematicians, with significant contributions made in many areas of probability and mathematics as well as the creation of new areas.<ref name="Cramer1976"/><ref name="Meyer2009">{{cite journal|last1=Meyer|first1=Paul-André|title=Stochastic Processes from 1950 to the Present|journal=Electronic Journal for History of Probability and Statistics|volume=5|issue=1|year=2009|pages=1–42}}</ref> Starting in the 1940s, [[Kiyosi Itô]] published papers developing the field of [[stochastic calculus]], which involves stochastic [[integrals]] and stochastic [[differential equations]] based on the Wiener or Brownian motion process.<ref name="Ito1998Prize">{{cite journal|title=Kiyosi Itô receives Kyoto Prize|journal=Notices of the AMS|volume=45|issue=8|year=1998|pages=981–982}}</ref> | | After World War II the study of probability theory and stochastic processes gained more attention from mathematicians, with significant contributions made in many areas of probability and mathematics as well as the creation of new areas.<ref name="Cramer1976"/><ref name="Meyer2009">{{cite journal|last1=Meyer|first1=Paul-André|title=Stochastic Processes from 1950 to the Present|journal=Electronic Journal for History of Probability and Statistics|volume=5|issue=1|year=2009|pages=1–42}}</ref> Starting in the 1940s, [[Kiyosi Itô]] published papers developing the field of [[stochastic calculus]], which involves stochastic [[integrals]] and stochastic [[differential equations]] based on the Wiener or Brownian motion process.<ref name="Ito1998Prize">{{cite journal|title=Kiyosi Itô receives Kyoto Prize|journal=Notices of the AMS|volume=45|issue=8|year=1998|pages=981–982}}</ref> |
| | | |
− | | + | 第二次世界大战后,概率论和随机过程的研究得到了数学家的更多关注,在概率论和数学的许多领域做出了重大贡献,并开创了新的领域统计学|卷=5 |问题=1 |年=2009 |页=1–42}</ref>从20世纪40年代开始,[[Kiyosi Itô]]发表了发展[[随机微积分]领域的论文,它包括基于维纳或布朗运动过程的随机[[积分]]和随机[[微分方程]] |
| | | |
| Also starting in the 1940s, connections were made between stochastic processes, particularly martingales, and the mathematical field of [[potential theory]], with early ideas by [[Shizuo Kakutani]] and then later work by Joseph Doob.<ref name="Meyer2009"/> Further work, considered pioneering, was done by [[Gilbert Hunt]] in the 1950s, connecting Markov processes and potential theory, which had a significant effect on the theory of Lévy processes and led to more interest in studying Markov processes with methods developed by Itô.<ref name="JarrowProtter2004"/><ref name="Bertoin1998pageVIIIandIX">{{cite book|author=Jean Bertoin|title=Lévy Processes|url=https://books.google.com/books?id=ftcsQgMp5cUC&pg=PR8|year=1998|publisher=Cambridge University Press|isbn=978-0-521-64632-1|page=viii and ix}}</ref><ref name="Steele2012page176">{{cite book|author=J. Michael Steele|title=Stochastic Calculus and Financial Applications|url=https://books.google.com/books?id=fsgkBAAAQBAJ&pg=PR4|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4684-9305-4|page=176}}</ref> | | Also starting in the 1940s, connections were made between stochastic processes, particularly martingales, and the mathematical field of [[potential theory]], with early ideas by [[Shizuo Kakutani]] and then later work by Joseph Doob.<ref name="Meyer2009"/> Further work, considered pioneering, was done by [[Gilbert Hunt]] in the 1950s, connecting Markov processes and potential theory, which had a significant effect on the theory of Lévy processes and led to more interest in studying Markov processes with methods developed by Itô.<ref name="JarrowProtter2004"/><ref name="Bertoin1998pageVIIIandIX">{{cite book|author=Jean Bertoin|title=Lévy Processes|url=https://books.google.com/books?id=ftcsQgMp5cUC&pg=PR8|year=1998|publisher=Cambridge University Press|isbn=978-0-521-64632-1|page=viii and ix}}</ref><ref name="Steele2012page176">{{cite book|author=J. Michael Steele|title=Stochastic Calculus and Financial Applications|url=https://books.google.com/books?id=fsgkBAAAQBAJ&pg=PR4|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4684-9305-4|page=176}}</ref> |
| | | |
− | | + | 同样从20世纪40年代开始,随机过程(尤其是鞅)与[[势理论]]的数学领域之间建立了联系,[[Shizuo Kakutani]]的早期思想和Joseph Doob后来的工作。<ref name=“Meyer2009”/>在1950年代[[Gilbert Hunt]]完成了被认为是开创性的进一步工作,把马尔可夫过程和势理论联系起来,这对Lévy过程理论产生了重大影响,并使人们对用It开发的方法研究马尔可夫过程产生了更多的兴趣=https://books.google.com/books?id=ftcsQgMp5cUC&pg=PR8 | year=1998 | publisher=Cambridge University Press | isbn=978-0-521-64632-1 | page=viii and ix}</ref><ref name=“Steele2012page176”{{引用图书|作者=J.Michael Steele | title=随机微积分和金融应用| url=https://books.google.com/books?id=fsgkbaaqbaj&pg=PR4 | year=2012 | publisher=Springer科学与商业媒体| isbn=978-1-4684-9305-4 | page=176}</ref> |
| | | |
| In 1953 Doob published his book ''Stochastic processes'', which had a strong influence on the theory of stochastic processes and stressed the importance of measure theory in probability.<ref name="Meyer2009"/> | | In 1953 Doob published his book ''Stochastic processes'', which had a strong influence on the theory of stochastic processes and stressed the importance of measure theory in probability.<ref name="Meyer2009"/> |
| + | 1953年,杜布出版了《随机过程》一书,这本书对随机过程理论产生了重大影响,并强调了测度理论在概率论中的重要性。<ref name=“Meyer2009”/> |
| | | |
| <ref name="Bingham2005">{{cite journal|last1=Bingham|first1=N. H.|title=Doob: a half-century on|journal=Journal of Applied Probability|volume=42|issue=1|year=2005|pages=257–266|issn=0021-9002|doi=10.1239/jap/1110381385|doi-access=free}}</ref> Doob also chiefly developed the theory of martingales, with later substantial contributions by [[Paul-André Meyer]]. Earlier work had been carried out by [[Sergei Bernstein]], [[Paul Lévy (mathematician)|Paul Lévy]] and [[Jean Ville]], the latter adopting the term martingale for the stochastic process.<ref name="HallHeyde2014page1">{{cite book|author1=P. Hall|author2=C. C. Heyde|title=Martingale Limit Theory and Its Application|url=https://books.google.com/books?id=gqriBQAAQBAJ&pg=PR10|year=2014|publisher=Elsevier Science|isbn=978-1-4832-6322-9|pages=1, 2}}</ref><ref name="Dynkin1989">{{cite journal|last1=Dynkin|first1=E. B.|title=Kolmogorov and the Theory of Markov Processes|journal=The Annals of Probability|volume=17|issue=3|year=1989|pages=822–832|issn=0091-1798|doi=10.1214/aop/1176991248|doi-access=free}}</ref> Methods from the theory of martingales became popular for solving various probability problems. Techniques and theory were developed to study Markov processes and then applied to martingales. Conversely, methods from the theory of martingales were established to treat Markov processes.<ref name="Meyer2009"/> | | <ref name="Bingham2005">{{cite journal|last1=Bingham|first1=N. H.|title=Doob: a half-century on|journal=Journal of Applied Probability|volume=42|issue=1|year=2005|pages=257–266|issn=0021-9002|doi=10.1239/jap/1110381385|doi-access=free}}</ref> Doob also chiefly developed the theory of martingales, with later substantial contributions by [[Paul-André Meyer]]. Earlier work had been carried out by [[Sergei Bernstein]], [[Paul Lévy (mathematician)|Paul Lévy]] and [[Jean Ville]], the latter adopting the term martingale for the stochastic process.<ref name="HallHeyde2014page1">{{cite book|author1=P. Hall|author2=C. C. Heyde|title=Martingale Limit Theory and Its Application|url=https://books.google.com/books?id=gqriBQAAQBAJ&pg=PR10|year=2014|publisher=Elsevier Science|isbn=978-1-4832-6322-9|pages=1, 2}}</ref><ref name="Dynkin1989">{{cite journal|last1=Dynkin|first1=E. B.|title=Kolmogorov and the Theory of Markov Processes|journal=The Annals of Probability|volume=17|issue=3|year=1989|pages=822–832|issn=0091-1798|doi=10.1214/aop/1176991248|doi-access=free}}</ref> Methods from the theory of martingales became popular for solving various probability problems. Techniques and theory were developed to study Markov processes and then applied to martingales. Conversely, methods from the theory of martingales were established to treat Markov processes.<ref name="Meyer2009"/> |
| | | |
− | | + | {{引用期刊| last1=Bingham | first1=Bingham first1=N.H.;title=Doob:半个世纪on | journal=journal of Appl概率应用概率| volume=42 | issen=1 | year=1 124年=2005年| pages=257–266 | issn=0021-9002 | doi=10.1239/1239/jap/jap/1110381385 |doiaccess=free}}</ref>Doob也主要发展了鞅理论的理论,他主要发展了鞅的理论,他还主要发展在,后来[[Paul AndréMeyer]]提供了大量捐助。早期的工作是由[[谢尔盖.伯恩斯坦],[[保罗.莱维(数学家)|保罗.莱维]和[[让.维尔]]进行的,后者对随机过程采用了鞅的概念=https://books.google.com/books?id=gqriBQAAQBAJ&pg=PR10 |年份=2014 | publisher=Elsevier Science | isbn=978-1-4832-6322-9 |页数=1,2} </ref><ref name=“dynk198989”>{〈引用期刊| last1=Dynkin | first1=E.B.| title=Kolmogorov和马尔可夫过程理论的马尔可夫过程理论| journal=概率年鉴| volume=17 | issue=3 | year=1989 | pages=822–832 | issn=0091-1798 | doi=10.1214/aop/11766991248 | doi access=free}</ref>方法方法从方法中获取方法从方法中获得方法方法从方法从方法到方法从方法起,方法从方法鞅理论因解决各种问题而流行起来概率问题。研究马尔可夫过程的技术和理论发展到鞅上。相反,鞅理论中的方法被用来处理马尔可夫过程。<ref name=“Meyer2009”/> |
| | | |
| Other fields of probability were developed and used to study stochastic processes, with one main approach being the theory of large deviations.<ref name="Meyer2009"/> The theory has many applications in statistical physics, among other fields, and has core ideas going back to at least the 1930s. Later in the 1960s and 1970s fundamental work was done by Alexander Wentzell in the Soviet Union and [[Monroe D. Donsker]] and [[Srinivasa Varadhan]] in the United States of America,<ref name="Ellis1995page98">{{cite journal|last1=Ellis|first1=Richard S.|title=An overview of the theory of large deviations and applications to statistical mechanics|journal=Scandinavian Actuarial Journal|volume=1995|issue=1|year=1995|page=98|issn=0346-1238|doi=10.1080/03461238.1995.10413952}}</ref> which would later result in Varadhan winning the 2007 Abel Prize.<ref name="RaussenSkau2008">{{cite journal|last1=Raussen|first1=Martin|last2=Skau|first2=Christian|title=Interview with Srinivasa Varadhan|journal=Notices of the AMS|volume=55|issue=2|year=2008|pages=238–246}}</ref> In the 1990s and 2000s the theories of [[Schramm–Loewner evolution]]<ref name="HenkelKarevski2012page113">{{cite book|author1=Malte Henkel|author2=Dragi Karevski|title=Conformal Invariance: an Introduction to Loops, Interfaces and Stochastic Loewner Evolution|url=https://books.google.com/books?id=fnCQWd0GEZ8C&pg=PA113|year=2012|publisher=Springer Science & Business Media|isbn=978-3-642-27933-1|page=113}}</ref> and [[rough paths]]<ref name="FrizVictoir2010page571">{{cite book|author1=Peter K. Friz|author2=Nicolas B. Victoir|title=Multidimensional Stochastic Processes as Rough Paths: Theory and Applications|url=https://books.google.com/books?id=CVgwLatxfGsC|year=2010|publisher=Cambridge University Press|isbn=978-1-139-48721-4|page=571}}</ref> were introduced and developed to study stochastic processes and other mathematical objects in probability theory, which respectively resulted in [[Fields Medal]]s being awarded to [[Wendelin Werner]]<ref name="Werner2004Fields">{{cite journal|title=2006 Fields Medals Awarded|journal=Notices of the AMS|volume=53|issue=9|year=2015|pages=1041–1044}}</ref> in 2008 and to [[Martin Hairer]] in 2014.<ref name="Hairer2004Fields">{{cite journal|last1=Quastel|first1=Jeremy|title=The Work of the 2014 Fields Medalists|journal=Notices of the AMS|volume=62|issue=11|year=2015|pages=1341–1344}}</ref> | | Other fields of probability were developed and used to study stochastic processes, with one main approach being the theory of large deviations.<ref name="Meyer2009"/> The theory has many applications in statistical physics, among other fields, and has core ideas going back to at least the 1930s. Later in the 1960s and 1970s fundamental work was done by Alexander Wentzell in the Soviet Union and [[Monroe D. Donsker]] and [[Srinivasa Varadhan]] in the United States of America,<ref name="Ellis1995page98">{{cite journal|last1=Ellis|first1=Richard S.|title=An overview of the theory of large deviations and applications to statistical mechanics|journal=Scandinavian Actuarial Journal|volume=1995|issue=1|year=1995|page=98|issn=0346-1238|doi=10.1080/03461238.1995.10413952}}</ref> which would later result in Varadhan winning the 2007 Abel Prize.<ref name="RaussenSkau2008">{{cite journal|last1=Raussen|first1=Martin|last2=Skau|first2=Christian|title=Interview with Srinivasa Varadhan|journal=Notices of the AMS|volume=55|issue=2|year=2008|pages=238–246}}</ref> In the 1990s and 2000s the theories of [[Schramm–Loewner evolution]]<ref name="HenkelKarevski2012page113">{{cite book|author1=Malte Henkel|author2=Dragi Karevski|title=Conformal Invariance: an Introduction to Loops, Interfaces and Stochastic Loewner Evolution|url=https://books.google.com/books?id=fnCQWd0GEZ8C&pg=PA113|year=2012|publisher=Springer Science & Business Media|isbn=978-3-642-27933-1|page=113}}</ref> and [[rough paths]]<ref name="FrizVictoir2010page571">{{cite book|author1=Peter K. Friz|author2=Nicolas B. Victoir|title=Multidimensional Stochastic Processes as Rough Paths: Theory and Applications|url=https://books.google.com/books?id=CVgwLatxfGsC|year=2010|publisher=Cambridge University Press|isbn=978-1-139-48721-4|page=571}}</ref> were introduced and developed to study stochastic processes and other mathematical objects in probability theory, which respectively resulted in [[Fields Medal]]s being awarded to [[Wendelin Werner]]<ref name="Werner2004Fields">{{cite journal|title=2006 Fields Medals Awarded|journal=Notices of the AMS|volume=53|issue=9|year=2015|pages=1041–1044}}</ref> in 2008 and to [[Martin Hairer]] in 2014.<ref name="Hairer2004Fields">{{cite journal|last1=Quastel|first1=Jeremy|title=The Work of the 2014 Fields Medalists|journal=Notices of the AMS|volume=62|issue=11|year=2015|pages=1341–1344}}</ref> |
| | | |
− | | + | 概率的其他领域也被发展和用于研究随机过程,其中一个主要方法是大偏差理论。<ref name=“Meyer2009”/>该理论在统计物理等领域有许多应用,其核心思想至少可以追溯到20世纪30年代。20世纪60年代和70年代后期,苏联的亚历山大·温策尔和美利坚合众国的[[Monroe D.Donsker]]和[[Srinivasa Varadhan]]完成了基础工作,<ref name=“Ellis1995page98”>{cite journal | last1=Ellis | first1=Richard S.| title=大理论概述统计力学的偏差与应用| journal=斯堪的纳维亚精算杂志| volume=1995 | issue=1 | year=1995 | page=98 | issn=0346-1238 | doi=10.1080/03461238.1995.10413952}</ref>,这将使瓦拉丹获得2007年阿贝尔奖。<ref name=“RaussenSkau2008”>{citejournal | last 1=Raussen | first1=Martin | last2=Skau | first2=Christian | title=专访Srinivasa Varadhan | journal=注意AMS | volume=55 | issue=2 | year=2008 | pages=238–246}</ref>上世纪90年代和2000年代的理论[[施拉姆–Loewner演化]]]<ref name=“HenkelkeKarevskI2012Page113”>{引用书〈引书| AuthorAuthorAuthorAuthorAuthorAuthorAuthorAuth1=马尔特-汉克尔| author2=德拉吉Karevski | title=共形不变性:循环、接口和随机Loewner演化简介| url=https://books.google.com/books?id=fnCQWd0GEZ8C&pg=PA113 | year=2012 | publisher=Springer Science&Business Media | isbn=978-3-642-27933-1 | page=113}</ref>和[[粗略路径]]<ref name=“frizvictoir201page571”>{cite book | author1=Peter K.Friz | author2=Nicolas B.Victoir | title=多维随机过程作为粗糙路径:理论和应用程序| url=https://books.google.com/books?id=CVgwLatxfGsC | year=2010 | publisher=Cambridge University Press | isbn=978-1-139-48721-4 | page=571}</ref>被引入和发展来研究概率论中的随机过程和其他数学对象,分别在2008年和2014年分别授予[[Wendelin Werner]]<ref name=“Werner2004Fields”>{cite journal | title=2006菲尔兹勋章| journal=AMS通知|卷=53 |问题=9 |年=2015 |页=1041-1044}</ref>和2014年授予[[Martin Haier]]journal | last1=Quastel | first1=Jeremy | title=2014年菲尔兹奖获得者的作品| journal=AMS的通知|卷=62 |问题=11 |年=2015 |页=1341-1344}</ref> |
| | | |
| The theory of stochastic processes still continues to be a focus of research, with yearly international conferences on the topic of stochastic processes.<ref name="BlathImkeller2011"/><ref name="Applebaum2004page1336"/> | | The theory of stochastic processes still continues to be a focus of research, with yearly international conferences on the topic of stochastic processes.<ref name="BlathImkeller2011"/><ref name="Applebaum2004page1336"/> |
| + | 随机过程理论仍然是研究的焦点,每年都有关于随机过程的国际会议 |
| | | |
| Category:Stochastic models | | Category:Stochastic models |