更改

删除268字节 、 2020年9月27日 (日) 11:42
第42行: 第42行:     
The [[empirical distribution function]] ''F''<sub>''n''</sub> for ''n'' [[Independent and identically distributed random variables|independent and identically distributed]] (i.i.d.) ordered observations ''X<sub>i</sub>'' is defined as
 
The [[empirical distribution function]] ''F''<sub>''n''</sub> for ''n'' [[Independent and identically distributed random variables|independent and identically distributed]] (i.i.d.) ordered observations ''X<sub>i</sub>'' is defined as
 +
 +
n个独立且均匀分布(i.i.d.)的有序观测值Xi的经验分布函数Fn定义为:
 +
 +
<math>F_n(x)={1 \over n}\sum_{i=1}^n I_{[-\infty,x]}(X_i)</math>
    
where I_{[-\infty,x]}(X_i) is the indicator function, equal to 1 if X_i \le x and equal to 0 otherwise.
 
where I_{[-\infty,x]}(X_i) is the indicator function, equal to 1 if X_i \le x and equal to 0 otherwise.
第47行: 第51行:  
The Kolmogorov–Smirnov statistic for a given cumulative distribution function F(x) is
 
The Kolmogorov–Smirnov statistic for a given cumulative distribution function F(x) is
   −
:<math>F_n(x)={1 \over n}\sum_{i=1}^n I_{[-\infty,x]}(X_i)</math>
+
其中 {\displaystyle I_{[-\infty ,x]}(X_{i})}I_{[-\infty ,x]}(X_{i})是指标函数,如果 {\displaystyle X_{i}\leq x}X_{i}\leq x等于1,否则等于0。
 +
 
 +
给定累积分布函数F(x)的Kolmogorov–Smirnov统计量为:
    
D_n= \sup_x |F_n(x)-F(x)|
 
D_n= \sup_x |F_n(x)-F(x)|
   −
D _ n = sup _ x | f _ n (x)-f (x) |
+
where supx is the supremum of the set of distances. By the Glivenko–Cantelli theorem, if the sample comes from distribution F(x), then Dn converges to 0 almost surely in the limit when n goes to infinity. Kolmogorov strengthened this result, by effectively providing the rate of this convergence (see Kolmogorov distribution). Donsker's theorem provides a yet stronger result.
   −
where <math>I_{[-\infty,x]}(X_i)</math> is the [[indicator function]], equal to 1 if <math>X_i \le x</math> and equal to 0 otherwise.
+
其中supx是距离集的最大值。根据Glivenko-Cantelli定理,如果样本来自分布F(x),则当n变为无穷大时,Dn几乎肯定会收敛于0。Kolmogorov通过有效加入收敛速率来增强此结果(请参阅Kolmogorov分布)。另外Donsker定理提供了更强的结果。
 
  −
where supx is the supremum of the set of distances. By the Glivenko–Cantelli theorem, if the sample comes from distribution F(x), then Dn converges to 0 almost surely in the limit when n goes to infinity. Kolmogorov strengthened this result, by effectively providing the rate of this convergence (see Kolmogorov distribution). Donsker's theorem provides a yet stronger result.
      
In practice, the statistic requires a relatively large number of data points (in comparison to other goodness of fit criteria such as the Anderson–Darling test statistic) to properly reject the null hypothesis.
 
In practice, the statistic requires a relatively large number of data points (in comparison to other goodness of fit criteria such as the Anderson–Darling test statistic) to properly reject the null hypothesis.
  −
  −
  −
n个独立且均匀分布(i.i.d.)的有序观测值Xi的经验分布函数Fn定义为:
  −
  −
F_{n}(x)={1 \over n}\sum _{i=1}^{n}I_{[-\infty ,x]}(X_{i})
  −
  −
其中 {\displaystyle I_{[-\infty ,x]}(X_{i})}I_{[-\infty ,x]}(X_{i})是指标函数,如果 {\displaystyle X_{i}\leq x}X_{i}\leq x等于1,否则等于0。
  −
  −
给定累积分布函数F(x)的Kolmogorov–Smirnov统计量为:
  −
  −
D_{n}=\sup _{x}|F_{n}(x)-F(x)|
  −
  −
其中supx是距离集的最大值。根据Glivenko-Cantelli定理,如果样本来自分布F(x),则当n变为无穷大时,Dn几乎肯定会收敛于0。Kolmogorov通过有效加入收敛速率来增强此结果(请参阅Kolmogorov分布)。另外Donsker定理提供了更强的结果。
      
在实践中,该统计需要相对大量的数据点(与其他拟合优度标准相比,例如Anderson-Darling检验统计)才能正确地拒绝原假设。
 
在实践中,该统计需要相对大量的数据点(与其他拟合优度标准相比,例如Anderson-Darling检验统计)才能正确地拒绝原假设。
961

个编辑