更改

删除2字节 、 2020年9月27日 (日) 11:58
第170行: 第170行:     
想要使用估计参数值,自然而然会出现应该使用哪种估计方法的问题。通常情况下,采用的是最大似然法,但对于如正态分布,最大似然法在sigma上具有较大的偏差。而使用矩量拟合或KS最小化来替代则对临界值有很大影响,并且对检验功效也有一定影响。如果我们需要通过KS测试来确定df = 2的Student-T数据是否正常,那么基于H0的最大似然率估计(数据是正常的,因此使用标度的标准偏差)会得出更大的KS距离,从而不符合最小KS的拟合。在这种情况下,我们应该拒绝H0,在最大似然法中通常是这样,因为对于T-2数据而言,样本标准偏差可能非常大,但是如果将KS最小化,我们可能会得到太低的KS而无法拒绝H0。在Student-T情况下,用KS估计而不是最大似然法来进行改进的KS检验会使其效果稍差一些。但是在其他情况下,经过改良的KS检测会会得到更好的检验功效。
 
想要使用估计参数值,自然而然会出现应该使用哪种估计方法的问题。通常情况下,采用的是最大似然法,但对于如正态分布,最大似然法在sigma上具有较大的偏差。而使用矩量拟合或KS最小化来替代则对临界值有很大影响,并且对检验功效也有一定影响。如果我们需要通过KS测试来确定df = 2的Student-T数据是否正常,那么基于H0的最大似然率估计(数据是正常的,因此使用标度的标准偏差)会得出更大的KS距离,从而不符合最小KS的拟合。在这种情况下,我们应该拒绝H0,在最大似然法中通常是这样,因为对于T-2数据而言,样本标准偏差可能非常大,但是如果将KS最小化,我们可能会得到太低的KS而无法拒绝H0。在Student-T情况下,用KS估计而不是最大似然法来进行改进的KS检验会使其效果稍差一些。但是在其他情况下,经过改良的KS检测会会得到更好的检验功效。
  −
      
=== Discrete and mixed null distribution 离散和混合零分布 ===
 
=== Discrete and mixed null distribution 离散和混合零分布 ===
961

个编辑