更改

添加85字节 、 2020年10月7日 (三) 14:03
添加内容
第17行: 第17行:  
* '''Agglomerative''': This is a "[[Top-down and bottom-up design|bottom-up]]" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
 
* '''Agglomerative''': This is a "[[Top-down and bottom-up design|bottom-up]]" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
   −
补充翻译:“聚集”:这是一种“自上而下又自下而上/纵向”的方法:每个被观察数据从自己的簇类中开始,当一个被观察数据向上层移动时,成对的簇类被合并。
+
补充翻译:合并:这是一种“自上而下又自下而上/纵向”的方法:每个被观察数据从自己的簇类中开始,当一个被观察数据向上层移动时,成对的簇类被合并。
    
* '''Divisive''': This is a "[[Top-down and bottom-up design|top-down]]" approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.
 
* '''Divisive''': This is a "[[Top-down and bottom-up design|top-down]]" approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.
   −
补充翻译:分离:这是一种“自上而下”的方法:所有的被观察数据都从一个簇类中开始,当一个簇类向下移动时,整个数据群会递归地执行分割。
+
补充翻译:分裂:这是一种“自上而下”的方法:所有的被观察数据都从一个簇类中开始,当一个簇类向下移动时,整个数据群会递归地执行分割。
    
In general, the merges and splits are determined in a [[greedy algorithm|greedy]] manner. The results of hierarchical clustering<ref>{{cite book | author=Frank Nielsen | title=Introduction to HPC with MPI for Data Science |  year=2016 | publisher=Springer |
 
In general, the merges and splits are determined in a [[greedy algorithm|greedy]] manner. The results of hierarchical clustering<ref>{{cite book | author=Frank Nielsen | title=Introduction to HPC with MPI for Data Science |  year=2016 | publisher=Springer |
第27行: 第27行:  
In general, the merges and splits are determined in a greedy manner. The results of hierarchical clustering<ref>{{cite book | author=Frank Nielsen | title=Introduction to HPC with MPI for Data Science |  year=2016 | publisher=Springer |
 
In general, the merges and splits are determined in a greedy manner. The results of hierarchical clustering<ref>{{cite book | author=Frank Nielsen | title=Introduction to HPC with MPI for Data Science |  year=2016 | publisher=Springer |
   −
一般来说,合并和分裂是以贪婪的方式决定的。'''<font color="#ff8000"> 层次聚类Hierarchical clustering</font>'''的结果 < ref > { cite book | author = Frank Nielsen | title = Introduction to HPC with MPI for Data Science | year = 2016 | publisher = Springer |  
+
此处翻译编辑视图内有显示阅读视图中无。
 +
一般来说,合并和分裂是以使用者希望的方式决定的。'''<font color="#ff8000"> 而层次聚类Hierarchical clustering</font>'''的结果 < ref > { cite book | author = Frank Nielsen | title = Introduction to HPC with MPI for Data Science | year = 2016 | publisher = Springer |  
    
chapter=Chapter 8: Hierarchical Clustering | url=https://www.springer.com/gp/book/9783319219028 |chapter-url=https://www.researchgate.net/publication/314700681 }}</ref> are usually presented in a [[dendrogram]].
 
chapter=Chapter 8: Hierarchical Clustering | url=https://www.springer.com/gp/book/9783319219028 |chapter-url=https://www.researchgate.net/publication/314700681 }}</ref> are usually presented in a [[dendrogram]].
第33行: 第34行:  
chapter=Chapter 8: Hierarchical Clustering | url=https://www.springer.com/gp/book/9783319219028 |chapter-url=https://www.researchgate.net/publication/314700681 }}</ref> are usually presented in a dendrogram.
 
chapter=Chapter 8: Hierarchical Clustering | url=https://www.springer.com/gp/book/9783319219028 |chapter-url=https://www.researchgate.net/publication/314700681 }}</ref> are usually presented in a dendrogram.
   −
第八章: '''<font color="#ff8000"> 层次聚类Hierarchical clustering</font>''' | url =  https://www.springer.com/gp/book/9783319219028 | Chapter-url =  https://www.researchgate.net/publication/314700681} </ref > 通常在树状图中呈现。
+
正如在第八章: '''<font color="#ff8000"> 层次聚类Hierarchical clustering</font>''' | url =  https://www.springer.com/gp/book/9783319219028 | Chapter-url =  https://www.researchgate.net/publication/314700681} </ref > 中所言,通常在树状图中呈现。
     
526

个编辑