第17行: |
第17行: |
| * '''Agglomerative''': This is a "[[Top-down and bottom-up design|bottom-up]]" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy. | | * '''Agglomerative''': This is a "[[Top-down and bottom-up design|bottom-up]]" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy. |
| | | |
− | 补充翻译:“聚集”:这是一种“自上而下又自下而上/纵向”的方法:每个被观察数据从自己的簇类中开始,当一个被观察数据向上层移动时,成对的簇类被合并。
| + | 补充翻译:合并:这是一种“自上而下又自下而上/纵向”的方法:每个被观察数据从自己的簇类中开始,当一个被观察数据向上层移动时,成对的簇类被合并。 |
| | | |
| * '''Divisive''': This is a "[[Top-down and bottom-up design|top-down]]" approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy. | | * '''Divisive''': This is a "[[Top-down and bottom-up design|top-down]]" approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy. |
| | | |
− | 补充翻译:分离:这是一种“自上而下”的方法:所有的被观察数据都从一个簇类中开始,当一个簇类向下移动时,整个数据群会递归地执行分割。
| + | 补充翻译:分裂:这是一种“自上而下”的方法:所有的被观察数据都从一个簇类中开始,当一个簇类向下移动时,整个数据群会递归地执行分割。 |
| | | |
| In general, the merges and splits are determined in a [[greedy algorithm|greedy]] manner. The results of hierarchical clustering<ref>{{cite book | author=Frank Nielsen | title=Introduction to HPC with MPI for Data Science | year=2016 | publisher=Springer | | | In general, the merges and splits are determined in a [[greedy algorithm|greedy]] manner. The results of hierarchical clustering<ref>{{cite book | author=Frank Nielsen | title=Introduction to HPC with MPI for Data Science | year=2016 | publisher=Springer | |
第27行: |
第27行: |
| In general, the merges and splits are determined in a greedy manner. The results of hierarchical clustering<ref>{{cite book | author=Frank Nielsen | title=Introduction to HPC with MPI for Data Science | year=2016 | publisher=Springer | | | In general, the merges and splits are determined in a greedy manner. The results of hierarchical clustering<ref>{{cite book | author=Frank Nielsen | title=Introduction to HPC with MPI for Data Science | year=2016 | publisher=Springer | |
| | | |
− | 一般来说,合并和分裂是以贪婪的方式决定的。'''<font color="#ff8000"> 层次聚类Hierarchical clustering</font>'''的结果 < ref > { cite book | author = Frank Nielsen | title = Introduction to HPC with MPI for Data Science | year = 2016 | publisher = Springer |
| + | 此处翻译编辑视图内有显示阅读视图中无。 |
| + | 一般来说,合并和分裂是以使用者希望的方式决定的。'''<font color="#ff8000"> 而层次聚类Hierarchical clustering</font>'''的结果 < ref > { cite book | author = Frank Nielsen | title = Introduction to HPC with MPI for Data Science | year = 2016 | publisher = Springer | |
| | | |
| chapter=Chapter 8: Hierarchical Clustering | url=https://www.springer.com/gp/book/9783319219028 |chapter-url=https://www.researchgate.net/publication/314700681 }}</ref> are usually presented in a [[dendrogram]]. | | chapter=Chapter 8: Hierarchical Clustering | url=https://www.springer.com/gp/book/9783319219028 |chapter-url=https://www.researchgate.net/publication/314700681 }}</ref> are usually presented in a [[dendrogram]]. |
第33行: |
第34行: |
| chapter=Chapter 8: Hierarchical Clustering | url=https://www.springer.com/gp/book/9783319219028 |chapter-url=https://www.researchgate.net/publication/314700681 }}</ref> are usually presented in a dendrogram. | | chapter=Chapter 8: Hierarchical Clustering | url=https://www.springer.com/gp/book/9783319219028 |chapter-url=https://www.researchgate.net/publication/314700681 }}</ref> are usually presented in a dendrogram. |
| | | |
− | 第八章: '''<font color="#ff8000"> 层次聚类Hierarchical clustering</font>''' | url = https://www.springer.com/gp/book/9783319219028 | Chapter-url = https://www.researchgate.net/publication/314700681} </ref > 通常在树状图中呈现。
| + | 正如在第八章: '''<font color="#ff8000"> 层次聚类Hierarchical clustering</font>''' | url = https://www.springer.com/gp/book/9783319219028 | Chapter-url = https://www.researchgate.net/publication/314700681} </ref > 中所言,通常在树状图中呈现。 |
| | | |
| | | |