更改

添加47字节 、 2020年10月9日 (五) 20:27
无编辑摘要
第39行: 第39行:  
Some authorities emphasize a distinction between strong AI and applied AI, also called narrow AI In contrast to strong AI, weak AI is not intended to perform human cognitive abilities.  Rather, weak AI is limited to the use of software to study or accomplish specific problem solving or reasoning tasks.
 
Some authorities emphasize a distinction between strong AI and applied AI, also called narrow AI In contrast to strong AI, weak AI is not intended to perform human cognitive abilities.  Rather, weak AI is limited to the use of software to study or accomplish specific problem solving or reasoning tasks.
   −
一些权威机构强调''强人工智能''和''应用人工智能''之间的区别,也称为''狭义人工智能''与''强人工智能''相比,弱人工智能并不是为了执行人类的认知能力。相反,弱人工智能仅限于使用软件来研究或完成特定问题的解决或完成推理任务。
+
一些权威机构强调'' 强人工智能 ''和'' 应用人工智能 ''之间的区别,也称为'' 狭义人工智能 ''与'' 强人工智能 ''相比,弱人工智能并不是为了执行人类的认知能力。相反,弱人工智能仅限于使用软件来研究或完成特定问题的解决或完成推理任务。
      第273行: 第273行:  
The term "artificial general intelligence" was used as early as 1997, by Mark Gubrud in a discussion of the implications of fully automated military production and operations. The term was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. The research objective is much older, for example Doug Lenat's Cyc project (that began in 1984), and Allen Newell's Soar project are regarded as within the scope of AGI. AGI research activity in 2006 was described by Pei Wang and Ben Goertzel as "producing publications and preliminary results". The first summer school in AGI was organized in Xiamen, China in 2009 by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given in 2010 and 2011 at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course in AGI in 2018, organized by Lex Fridman and featuring a number of guest lecturers. However, as yet, most AI researchers have devoted little attention to AGI, with some claiming that intelligence is too complex to be completely replicated in the near term. However, a small number of computer scientists are active in AGI research, and many of this group are contributing to a series of AGI conferences. The research is extremely diverse and often pioneering in nature. In the introduction to his book, Goertzel says that estimates of the time needed before a truly flexible AGI is built vary from 10 years to over a century, but the consensus in the AGI research community seems to be that the timeline discussed by Ray Kurzweil in The Singularity is Near (i.e. between 2015 and 2045) is plausible.
 
The term "artificial general intelligence" was used as early as 1997, by Mark Gubrud in a discussion of the implications of fully automated military production and operations. The term was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. The research objective is much older, for example Doug Lenat's Cyc project (that began in 1984), and Allen Newell's Soar project are regarded as within the scope of AGI. AGI research activity in 2006 was described by Pei Wang and Ben Goertzel as "producing publications and preliminary results". The first summer school in AGI was organized in Xiamen, China in 2009 by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given in 2010 and 2011 at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course in AGI in 2018, organized by Lex Fridman and featuring a number of guest lecturers. However, as yet, most AI researchers have devoted little attention to AGI, with some claiming that intelligence is too complex to be completely replicated in the near term. However, a small number of computer scientists are active in AGI research, and many of this group are contributing to a series of AGI conferences. The research is extremely diverse and often pioneering in nature. In the introduction to his book, Goertzel says that estimates of the time needed before a truly flexible AGI is built vary from 10 years to over a century, but the consensus in the AGI research community seems to be that the timeline discussed by Ray Kurzweil in The Singularity is Near (i.e. between 2015 and 2045) is plausible.
   −
”人工通用智能”一词早在1997年就由马克·古布鲁德(Mark Gubrud)在讨论全自动化军事生产和作业的影响时使用。这个术语在2002年左右被肖恩·莱格(Shane Legg)和本·格兹尔(Ben Goertzel)重新引入并推广。研究目标要古老得多,例如道格•雷纳特(Doug Lenat)的 Cyc 项目(始于1984年) ,以及艾伦•纽厄尔(Allen Newell)的 Soar 项目被认为属于 AGI 的范围。王培(Pei Wang)和本·格兹尔将 AGI 2006年的研究活动描述为”发表论文和取得初步成果”。2009年,厦门大学人工脑实验室和 OpenCog 在中国厦门组织了 AGI 的第一个暑期学校。第一个大学课程于2010年和2011年在保加利亚普罗夫迪夫大学由 Todor Arnaudov 开设。2018年,麻省理工学院在 AGI 开设了一门课程,由 Lex Fridman 组织,并邀请了一些客座讲师。然而,迄今为止,大多数人工智能研究人员对 AGI 关注甚少,一些人声称,智能过于复杂,无法在短期内完全复制。然而,少数计算机科学家积极参与 AGI 的研究,其中许多人正在为 AGI 的一系列会议做出贡献。这项研究极其多样化,而且往往具有开创性。在他的书的序言中,Goertzel 说,一个真正灵活的 AGI 制造所需的时间估计从10年到超过一个世纪不等,但是 AGI 研究团体的共识似乎是 Ray Kurzweil 在《奇点迫近讨论的时间表。在2015年至2045年之间)是合理的。
+
”人工通用智能”一词早在1997年就由马克·古布鲁德(Mark Gubrud)在讨论全自动化军事生产和作业的影响时使用。这个术语在2002年左右被肖恩·莱格(Shane Legg)和本·格兹尔(Ben Goertzel)重新引入并推广。研究目标要古老得多,例如道格•雷纳特(Doug Lenat)的 Cyc 项目(始于1984年) ,以及艾伦•纽厄尔(Allen Newell)的 Soar 项目被认为属于通用人工智能的范围。王培(Pei Wang)和本·格兹尔将2006年的通用人工智能研究活动描述为“发表论文和取得初步成果”。2009年,厦门大学人工脑实验室和 OpenCog 在中国厦门组织了通用人工智能的第一个暑期学校。第一个大学课程于2010年和2011年在保加利亚普罗夫迪夫大学由 Todor Arnaudov 开设。2018年,麻省理工学院在 AGI 开设了一门课程,由 Lex Fridman 组织,并邀请了一些客座讲师。然而,迄今为止,大多数人工智能研究人员对 AGI 关注甚少,一些人声称,智能过于复杂,无法在短期内完全复制。然而,少数计算机科学家积极参与 AGI 的研究,其中许多人正在为 AGI 的一系列会议做出贡献。这项研究极其多样化,而且往往具有开创性。在他的书的序言中,Goertzel 说,一个真正灵活的 AGI 制造所需的时间估计从10年到超过一个世纪不等,但是 AGI 研究团体的共识似乎是 Ray Kurzweil 在《奇点迫近讨论的时间表。在2015年至2045年之间)是合理的。
     
97

个编辑