更改

删除6字节 、 2020年10月11日 (日) 19:43
无编辑摘要
第19行: 第19行:  
{{cquote|... if I had been catering for them [physicists] alone I should have let the discussion turn on ''[[Thermodynamic free energy|free energy]]'' instead. It is the more familiar notion in this context. But this highly technical term seemed linguistically too near to ''[[energy]]'' for making the average reader alive to the contrast between the two things.}}
 
{{cquote|... if I had been catering for them [physicists] alone I should have let the discussion turn on ''[[Thermodynamic free energy|free energy]]'' instead. It is the more familiar notion in this context. But this highly technical term seemed linguistically too near to ''[[energy]]'' for making the average reader alive to the contrast between the two things.}}
   −
如果我只是迎合物理学家们,那么我就该让讨论转向<font color="#ff8000">“[[热力学自由能|自由能 free energy]]”</font>。在这个语境中,自由能是物理学更熟悉的概念。但是,这个高度专业的术语在语言学上似乎太接近于<font color="#ff8000">能量 energy</font>,以至于普通读者无法生动地看到两者之间的区别。
+
如果我只为了迎合物理学家们,那么我就会让讨论转向<font color="#ff8000">“[[热力学自由能|自由能 free energy]]”</font>。在这个语境中,自由能是物理学更熟悉的概念。但是,这个高度专业的术语在语言学上似乎太接近于<font color="#ff8000">能量 energy</font>,以至于普通读者无法生动地看到两者之间的区别。
    
In 2009, Mahulikar & Herwig redefined negentropy of a dynamically ordered sub-system as the specific entropy deficit of the ordered sub-system relative to its surrounding chaos.<ref>Mahulikar, S.P. & Herwig, H.: (2009) "Exact thermodynamic principles for dynamic order existence and evolution in chaos", ''Chaos, Solitons & Fractals'', v. '''41(4)''', pp. 1939–1948</ref> Thus, negentropy has SI units of (J kg<sup>−1</sup> K<sup>−1</sup>) when defined based on specific entropy per unit mass, and (K<sup>−1</sup>) when defined based on specific entropy per unit energy. This definition enabled: ''i'') scale-invariant thermodynamic representation of dynamic order existence, ''ii'') formulation of physical principles exclusively for dynamic order existence and evolution, and ''iii'') mathematical interpretation of Schrödinger's negentropy debt.
 
In 2009, Mahulikar & Herwig redefined negentropy of a dynamically ordered sub-system as the specific entropy deficit of the ordered sub-system relative to its surrounding chaos.<ref>Mahulikar, S.P. & Herwig, H.: (2009) "Exact thermodynamic principles for dynamic order existence and evolution in chaos", ''Chaos, Solitons & Fractals'', v. '''41(4)''', pp. 1939–1948</ref> Thus, negentropy has SI units of (J kg<sup>−1</sup> K<sup>−1</sup>) when defined based on specific entropy per unit mass, and (K<sup>−1</sup>) when defined based on specific entropy per unit energy. This definition enabled: ''i'') scale-invariant thermodynamic representation of dynamic order existence, ''ii'') formulation of physical principles exclusively for dynamic order existence and evolution, and ''iii'') mathematical interpretation of Schrödinger's negentropy debt.
第25行: 第25行:  
In 2009, Mahulikar & Herwig redefined negentropy of a dynamically ordered sub-system as the specific entropy deficit of the ordered sub-system relative to its surrounding chaos. Thus, negentropy has SI units of (J kg<sup>−1</sup> K<sup>−1</sup>) when defined based on specific entropy per unit mass, and (K<sup>−1</sup>) when defined based on specific entropy per unit energy. This definition enabled: i) scale-invariant thermodynamic representation of dynamic order existence, ii) formulation of physical principles exclusively for dynamic order existence and evolution, and iii) mathematical interpretation of Schrödinger's negentropy debt.
 
In 2009, Mahulikar & Herwig redefined negentropy of a dynamically ordered sub-system as the specific entropy deficit of the ordered sub-system relative to its surrounding chaos. Thus, negentropy has SI units of (J kg<sup>−1</sup> K<sup>−1</sup>) when defined based on specific entropy per unit mass, and (K<sup>−1</sup>) when defined based on specific entropy per unit energy. This definition enabled: i) scale-invariant thermodynamic representation of dynamic order existence, ii) formulation of physical principles exclusively for dynamic order existence and evolution, and iii) mathematical interpretation of Schrödinger's negentropy debt.
   −
2009年,Mahulikar 和 Herwig 将动态有序子系统的负熵重新定义为有序子系统相对于周围混沌的特定熵赤字。因此,根据单位质量的熵定义负熵的 SI 单位为(J kg<sup>−1</sup> K<sup>−1</sup>) ,其中(K<sup>−1</sup>)的定义基于单位能量的熵。这个定义实现了: i)动态有序存在的尺度不变的热力学表示,ii)专门为动态有序存在和演化而制定的物理原理,iii)薛定谔负熵的数学解释。
+
2009年,Mahulikar 和 Herwig 将动态有序子系统的负熵重新定义为有序子系统相对于周围混沌的特定熵赤字。因此,根据单位质量的熵定义负熵的 SI 单位为(J kg<sup>−1</sup> K<sup>−1</sup>) ,其中(K<sup>−1</sup>)的定义基于单位能量的熵。这个定义表明: i)动态有序存在的尺度不变的热力学表示,ii)动态有序存在和演化的专门物理原理,iii)薛定谔关于负熵的数学解释。
     
526

个编辑