更改

添加35字节 、 2020年10月14日 (三) 16:21
第118行: 第118行:  
In classical mechanics, the motion of a body is described by its position and velocity as the time value varies. Newton's laws allow these variables to be expressed dynamically (given the position, velocity, acceleration and various forces acting on the body) as a differential equation for the unknown position of the body as a function of time.
 
In classical mechanics, the motion of a body is described by its position and velocity as the time value varies. Newton's laws allow these variables to be expressed dynamically (given the position, velocity, acceleration and various forces acting on the body) as a differential equation for the unknown position of the body as a function of time.
   −
在经典力学中,物体的运动是由其位置和速度随时间变化而变化的。牛顿定律允许动态地表示这些变量(给定位置、速度、加速度和作用在物体上的各种力) ,作为物体作为时间函数的未知位置的微分方程。
+
在经典力学中,物体的运动是由其不断随时间变化的位置和速度来描述的。这些变量的表达在牛顿定律中是动态的(给定位置、速度、加速度和作用在物体上的各种力) ,并给出了求解时间的函数——物体未知位置——的微分方程。
      第126行: 第126行:  
In some cases, this differential equation (called an equation of motion) may be solved explicitly.
 
In some cases, this differential equation (called an equation of motion) may be solved explicitly.
   −
在某些情况下,这个微分方程(称为运动方程)可以明确地求解。
+
在某些情况下,这种微分方程(称为运动方程)可以精确地求解。
      第134行: 第134行:  
An example of modeling a real-world problem using differential equations is the determination of the velocity of a ball falling through the air, considering only gravity and air resistance. The ball's acceleration towards the ground is the acceleration due to gravity minus the deceleration due to air resistance. Gravity is considered constant, and air resistance may be modeled as proportional to the ball's velocity. This means that the ball's acceleration, which is a derivative of its velocity, depends on the velocity (and the velocity depends on time). Finding the velocity as a function of time involves solving a differential equation and verifying its validity.
 
An example of modeling a real-world problem using differential equations is the determination of the velocity of a ball falling through the air, considering only gravity and air resistance. The ball's acceleration towards the ground is the acceleration due to gravity minus the deceleration due to air resistance. Gravity is considered constant, and air resistance may be modeled as proportional to the ball's velocity. This means that the ball's acceleration, which is a derivative of its velocity, depends on the velocity (and the velocity depends on time). Finding the velocity as a function of time involves solving a differential equation and verifying its validity.
   −
使用微分方程模拟现实世界问题的一个例子是仅考虑重力和空气阻力确定球在空中落下的速度。球对地面的加速度是由于重力加速度减去由于空气阻力减速度。重力被认为是常数,空气阻力可以被模拟为与球的速度成正比。这意味着球的加速度,是其速度的导数,取决于速度(而速度取决于时间)。找到速度作为时间的函数需要解决一个微分方程问题并验证它的有效性。
+
使用微分方程模拟现实世界问题的一个例子是仅考虑重力和空气阻力确定球在空中落下的速度。球对地面的加速度是由于重力加速度减去由于空气阻力减速度。重力被认为是常数,空气阻力可以被模拟为与球的速度成正比。这意味着球的加速度,也就是其速度的导数,取决于速度(而速度取决于时间)。找到时间的函数--速度--需要解决一个微分方程问题并验证它的有效性。
 
  −
 
      
==Types==
 
==Types==
108

个编辑