更改

大小无更改 、 2020年10月16日 (五) 09:44
无编辑摘要
第14行: 第14行:  
<tr><td width="1000">
 
<tr><td width="1000">
 
<font color="blue">'''一个实例:'''</font><br>
 
<font color="blue">'''一个实例:'''</font><br>
<br>[[File:wcdwl0010.jpg|600px|居中]]<br>
+
<br>[[File:Wcdwl0010.jpg|600px|居中]]<br>
 
    <font color="blue">如图所示,因特网是一个无尺度网络,其中某些站点似乎与无数的其他站点相连结 (参见右图的星爆形结构细节)。本图绘制于2003年2月6日,描绘了从某一测试站点到其他约10万个站点的最短连结路径。图中以相同的颜色来表示相类似的站点。</font><br>
 
    <font color="blue">如图所示,因特网是一个无尺度网络,其中某些站点似乎与无数的其他站点相连结 (参见右图的星爆形结构细节)。本图绘制于2003年2月6日,描绘了从某一测试站点到其他约10万个站点的最短连结路径。图中以相同的颜色来表示相类似的站点。</font><br>
 
</td></tr></table><br>
 
</td></tr></table><br>
第35行: 第35行:  
    然而,实测结果却推翻了这个预测。在这个项目中,我们设计了一个软件,可从一个网页跳转到另一个,尽可能地收集网上的所有连结。虽然这个虚拟机器人仅仅探索了整个万维网的极小一部分,但它组合出来的图景。却揭示了令人惊异的事实:基本上,万维网是由少数高连结性的页面串连起来的,80%以上页面的连结数不到4个。然而只占节点总数不到万分之一的极少数节点,却有1000个以上的连结(一项后续的网络调查显示,有一份文件已经被超过200万的其他网页所连结!)。<br>
 
    然而,实测结果却推翻了这个预测。在这个项目中,我们设计了一个软件,可从一个网页跳转到另一个,尽可能地收集网上的所有连结。虽然这个虚拟机器人仅仅探索了整个万维网的极小一部分,但它组合出来的图景。却揭示了令人惊异的事实:基本上,万维网是由少数高连结性的页面串连起来的,80%以上页面的连结数不到4个。然而只占节点总数不到万分之一的极少数节点,却有1000个以上的连结(一项后续的网络调查显示,有一份文件已经被超过200万的其他网页所连结!)。<br>
 
    我们在计算恰好拥有k个连结的万维网页面的数目时,发现网页的连结分布遵循所谓的"幂次定律":任何节点与其他k个节点相连结的概率,与l/k成正比。对于流入的连结而言,n值接近于2,这也就是说,流入连接数只有某站点一半的站点,在网中的数量却有该站点的4倍之多。幂次定律和表征随机网络的钟形分布大相径庭。具体来说,幂次定律不像钟形曲线那样具有一个峰值,而是由连续递减的函数来描述。如果用双对数坐标系来描述幂次定律,得到的是一条直线[见下图随机网络vs无尺度网络]。与随机网络中连结的民主分布不同,幂次定律所描述的,是由少数集散节点(如Yahoo和Google)所主控的系统。<br>
 
    我们在计算恰好拥有k个连结的万维网页面的数目时,发现网页的连结分布遵循所谓的"幂次定律":任何节点与其他k个节点相连结的概率,与l/k成正比。对于流入的连结而言,n值接近于2,这也就是说,流入连接数只有某站点一半的站点,在网中的数量却有该站点的4倍之多。幂次定律和表征随机网络的钟形分布大相径庭。具体来说,幂次定律不像钟形曲线那样具有一个峰值,而是由连续递减的函数来描述。如果用双对数坐标系来描述幂次定律,得到的是一条直线[见下图随机网络vs无尺度网络]。与随机网络中连结的民主分布不同,幂次定律所描述的,是由少数集散节点(如Yahoo和Google)所主控的系统。<br>
[[File:wcdwl002.jpg|600px|居中]]
+
[[File:Wcdwl002.jpg|600px|居中]]
 
    随机网络中绝对不可能出现集散节点。当我们开始描绘万维网时,原本预期节点会像人类的身高一样遵循钟形分布,但结果却发现有些节点不能如此解释。我们就像突然发现了很多身高百尺的巨人一样,大吃了一惊。因此,我们想出了"无尺度"这样的用语。<br>
 
    随机网络中绝对不可能出现集散节点。当我们开始描绘万维网时,原本预期节点会像人类的身高一样遵循钟形分布,但结果却发现有些节点不能如此解释。我们就像突然发现了很多身高百尺的巨人一样,大吃了一惊。因此,我们想出了"无尺度"这样的用语。<br>
 
<br>
 
<br>
第123行: 第123行:  
    此外,并非所有的节点都是平等的。在选择将网页连结到何处时,人们可以从数十亿个网站中进行选择。然而我们大部分人只熟悉整个万维网的一小部分,这一小部分中往往包含那些拥有较多连结的站点,因为这样的站点更容易为人所知。只要连结到这些站点,就等于造就或加强了对它们的偏好。这种"优先连结"的过程,也发生在其他网络。在好莱坞,连结关系较多的影星更容易受到新秀们的重视。而在因特网上,那些连结较多的路由器通常还拥有更大的带宽,因而新用户就更倾向于连结到这些路由器上。在美国的生物技术产业内,象Genzyme这样的知名公司更容易吸引到同盟者,而这又进一步加强了它在未来合作中的吸引力。类似地,被引用较多的科学文献,会吸引更多的研究者去阅读和引用。美国著名的社会学家K·Merton将这种现象称之为"马太效应"。这个词来源于《新约》圣经的内容:"凡有的,还要加给他,叫他有余。"<br>
 
    此外,并非所有的节点都是平等的。在选择将网页连结到何处时,人们可以从数十亿个网站中进行选择。然而我们大部分人只熟悉整个万维网的一小部分,这一小部分中往往包含那些拥有较多连结的站点,因为这样的站点更容易为人所知。只要连结到这些站点,就等于造就或加强了对它们的偏好。这种"优先连结"的过程,也发生在其他网络。在好莱坞,连结关系较多的影星更容易受到新秀们的重视。而在因特网上,那些连结较多的路由器通常还拥有更大的带宽,因而新用户就更倾向于连结到这些路由器上。在美国的生物技术产业内,象Genzyme这样的知名公司更容易吸引到同盟者,而这又进一步加强了它在未来合作中的吸引力。类似地,被引用较多的科学文献,会吸引更多的研究者去阅读和引用。美国著名的社会学家K·Merton将这种现象称之为"马太效应"。这个词来源于《新约》圣经的内容:"凡有的,还要加给他,叫他有余。"<br>
 
    成长性和优先连结这两种机制,有助于解释集散节点的存在:当新节点出现时,它们更倾向于连结到已经有较多连结的节点,随着时间的推进,这些节点就拥有比其他节点更多 的连结数目。这种“富者逾富”的过程,有利于早期节点,它们更有可能成为集散节点。<br>
 
    成长性和优先连结这两种机制,有助于解释集散节点的存在:当新节点出现时,它们更倾向于连结到已经有较多连结的节点,随着时间的推进,这些节点就拥有比其他节点更多 的连结数目。这种“富者逾富”的过程,有利于早期节点,它们更有可能成为集散节点。<br>
[[File:wcdwl003.jpg|600px|居中]]
+
[[File:Wcdwl003.jpg|600px|居中]]
 
    我与阿Albert一道,进行了计算机模拟和计算,结果显示,具有优先连接的特性并且持续成长的网络,确实会发展成无尺度网络,并且节点的分布也遵循幂次定律,虽然这个理论模型过于简化,且需要根据具体情况加以调整,但还是对现实世界中无尺度网络的普遍存在提供了解释。<br>
 
    我与阿Albert一道,进行了计算机模拟和计算,结果显示,具有优先连接的特性并且持续成长的网络,确实会发展成无尺度网络,并且节点的分布也遵循幂次定律,虽然这个理论模型过于简化,且需要根据具体情况加以调整,但还是对现实世界中无尺度网络的普遍存在提供了解释。<br>
 
    成长性和优先连接还能够解释生物系统中为什么会出现无尺度网络。例如,美国墨西哥大学的Wagner和英国牛津布鲁克斯大学的A·Fell就发现,大肠杆菌代谢网络中连结性较高的几种分子,一般具有更为久远的进化史:有些甚至被认为是所谓的RNA世界(DNA出现之前的进化阶段)的遗物,还有的则是最古老的代谢路径的一部分,<br>
 
    成长性和优先连接还能够解释生物系统中为什么会出现无尺度网络。例如,美国墨西哥大学的Wagner和英国牛津布鲁克斯大学的A·Fell就发现,大肠杆菌代谢网络中连结性较高的几种分子,一般具有更为久远的进化史:有些甚至被认为是所谓的RNA世界(DNA出现之前的进化阶段)的遗物,还有的则是最古老的代谢路径的一部分,<br>
第134行: 第134行:  
    对集散节点的依赖,视系统的不同,既有利也有弊。对因恃网和细胞而言,能够应付随机出现的意外故障,当然是个大优点。此外,细胞对集散节点的依赖,也给药物研究者提供了新的方法:有可能找到这样的药物,能针对性地攻击细胞或者细菌的集散节点,以便杀死它们而又不会影响健康的组织。不利的情况也有:少数消息灵通的黑客只要攻击一些集散节点,就足以搞垮整个通信基础网络,这正是人们关心的焦点。<br>
 
    对集散节点的依赖,视系统的不同,既有利也有弊。对因恃网和细胞而言,能够应付随机出现的意外故障,当然是个大优点。此外,细胞对集散节点的依赖,也给药物研究者提供了新的方法:有可能找到这样的药物,能针对性地攻击细胞或者细菌的集散节点,以便杀死它们而又不会影响健康的组织。不利的情况也有:少数消息灵通的黑客只要攻击一些集散节点,就足以搞垮整个通信基础网络,这正是人们关心的焦点。<br>
 
    无尺度网络的这一致命缺陷,引发了这样一个问题:到底有多少集散节点是必不可少的?最近的研究表明,总的来说,只要有5-10%的集散节点同时失效,就足以搞垮系统。我们对因特网的实验显示,一次有组织的协同攻击,只要去除掉若干个集散节点(先去除最大的,再去除次大的,依次类推),就足以造成重大破坏。因此,为了避免因恶意攻击带来网络的大规模破坏,最有效的办法就是保护好集散节点。不过,要想知道特定的网络系统到底有多容易被破坏掉,还有待进一步的研究。例如,如果Genzyme和Genentech这样的集散节点一起失去作用,是不是美国的生物产业会因此而崩溃呢?<br>
 
    无尺度网络的这一致命缺陷,引发了这样一个问题:到底有多少集散节点是必不可少的?最近的研究表明,总的来说,只要有5-10%的集散节点同时失效,就足以搞垮系统。我们对因特网的实验显示,一次有组织的协同攻击,只要去除掉若干个集散节点(先去除最大的,再去除次大的,依次类推),就足以造成重大破坏。因此,为了避免因恶意攻击带来网络的大规模破坏,最有效的办法就是保护好集散节点。不过,要想知道特定的网络系统到底有多容易被破坏掉,还有待进一步的研究。例如,如果Genzyme和Genentech这样的集散节点一起失去作用,是不是美国的生物产业会因此而崩溃呢?<br>
[[File:wcdwl004.jpg|600px|居中]]<br><br>
+
[[File:Wcdwl004.jpg|600px|居中]]<br><br>
 
== "无尺度"流行病 ==
 
== "无尺度"流行病 ==
 
    对无尺度网络的认识,也可用于理解电脑病毒、疾病和时尚的传播。过去数十年间,无论是流行病学家还是市场营销专家,都在大力研究扩散理论。研究结果指出,一种传染病要在人群中传播开来,必须要跨越某一临界值。任何病毒、疾病或时尚的感染力一旦低于这个临界值,将不可避免地自行消亡;而一旦超过临界值,就会呈指数增长,最终传遍整个系统。<br>
 
    对无尺度网络的认识,也可用于理解电脑病毒、疾病和时尚的传播。过去数十年间,无论是流行病学家还是市场营销专家,都在大力研究扩散理论。研究结果指出,一种传染病要在人群中传播开来,必须要跨越某一临界值。任何病毒、疾病或时尚的感染力一旦低于这个临界值,将不可避免地自行消亡;而一旦超过临界值,就会呈指数增长,最终传遍整个系统。<br>
第154行: 第154行:  
<table width="600" border="0" bordercolor="black" cellspacing="0" cellpadding="0" bgcolor="e0e0e0" align="center">
 
<table width="600" border="0" bordercolor="black" cellspacing="0" cellpadding="0" bgcolor="e0e0e0" align="center">
 
<tr>
 
<tr>
<td width="300">[[File:wcdwl005.jpg|300px|居中]]
+
<td width="300">[[File:Wcdwl005.jpg|300px|居中]]
 
</td>
 
</td>
 
<td width="200">    左图示出了不同层次的集群。在层次式集群中,黄色表示美国著名建筑师Wright的住宅“落水山庄”的网页集群,绿色表示与此相连的其他有关Wright、著名宅第和美国宾州景点的网页集群。红色表示它们进一步与其它著名建筑师或建筑相连接的网页集群。
 
<td width="200">    左图示出了不同层次的集群。在层次式集群中,黄色表示美国著名建筑师Wright的住宅“落水山庄”的网页集群,绿色表示与此相连的其他有关Wright、著名宅第和美国宾州景点的网页集群。红色表示它们进一步与其它著名建筑师或建筑相连接的网页集群。
第181行: 第181行:  
[何毓嵩/译 曾少立/校]
 
[何毓嵩/译 曾少立/校]
 
<br>
 
<br>
[[File:wcdwl0060.jpg|800px|居中]]<br>
+
[[File:Wcdwl0060.jpg|800px|居中]]<br>
[[File:wcdwl007.jpg|800px|居中]]
+
[[File:Wcdwl007.jpg|800px|居中]]
       
 
 
 
 
[[category:旧词条迁移]]
 
[[category:旧词条迁移]]
113

个编辑