更改

添加2,608字节 、 2020年10月23日 (五) 16:16
创建页面,内容为“基本再生数(basic reproduction number)是传染病研究中一个重要的量,记为$R_0$,下面给出它的定义。考虑疾病传播的最初阶段,…”
基本再生数(basic reproduction number)是传染病研究中一个重要的量,记为$R_0$,下面给出它的定义。考虑疾病传播的最初阶段,此时只有少数的疾病案例,其他人都是易感个体,传染病学术语中通常称为幼稚人口(native population),假如其中一个易感个体在疾病爆发以后被感染,那么基本再生数指的就是这个被传染的人在他恢复之前将疾病平均传染给了多少个人。例如,如果每个被感染者将疾病平均又传染给了其他两个人,则$R_0=2$。如果有一半的人将疾病分别又传染给另一个人,而剩余的一半人没有传染给其他任何人,那么$R_0=1/2$,依次类推。

如果$R_0=2$,那么每个得病的人就会平均传染两个人,而这两个人中的每一个又会再传染另外两个人,如此下去,每一轮新的疾病的案例都会加倍,从而出现指数增长规律。相反,如果$R_0=1/2$,那么疾病就会以指数形式衰减。$R_0=1$是增长和减少的分割点,因此它也标示着传染病阈值(epidemic threshold),偏离此值时,疾病要么倍增要么消亡。

以SIR模型为例来说,其$R_0$值可以通过如下方式计算得到:

由于SIR模型中,任意时间间隔$\delta\tau$内,个体恢复的概率为$\gamma\delta\tau$,不能恢复的概率为$1-\gamma\delta\tau$。因此,在总时间$\tau$后,个体仍然处于感染态的概率为
\begin{equation}
\lim_{\delta\tau\to0}(1-\gamma\delta\tau)^{\tau/\delta\tau}=e^{-\gamma\tau},
\end{equation}
同时,个体保持感染态,然后在$\tau$到$\tau+d\tau$区间恢复的概率$p(\tau)d\tau$可以表示为上述概率与$\gamma d\tau$的乘积,即
\begin{equation}
p(\tau)d\tau=\gamma e^{-\gamma\tau}d\tau,
\end{equation}
通过上式我们得到了感染个体在恢复以前处于感染态的时间长度$\tau$的分布。由于基本再生数$R_0$指的就是这个被传染的人在他恢复之前将疾病平均传染给了多少个人。所以对于SIR模型的$R_0$值,如果一个人在时间$\tau$内仍然具有传染性,则在这段时间内,与之接触的人的期望值为$\beta\tau$。$R_0$的定义是针对幼稚人口给出的,而在幼稚人口中接触到的所有人都是易感者,因此接触到的所有人都是易感者,因此$\beta\tau$也就是感染个体将传染的总人数。对$\beta\tau$中的$\tau$的分布取平均,就可以得到$R_0$的平均值:
\begin{equation}
R_0=\beta\gamma\int^\infty_0 \tau e^{-\gamma\tau}d\tau=\frac{\beta}{\gamma}.
\end{equation}
61

个编辑