第492行: |
第492行: |
| If a PDE has coefficients that are not constant, it is possible that it will not belong to any of these categories but rather be of mixed type. A simple but important example is the Euler–Tricomi equation | | If a PDE has coefficients that are not constant, it is possible that it will not belong to any of these categories but rather be of mixed type. A simple but important example is the Euler–Tricomi equation |
| | | |
− | 如果 PDE 的系数不是常数,那么它可能不属于这些类别中的任何一个,而是属于混合类型。一个简单但重要的例子是欧拉-特里科米方程
| + | 如果偏微分方程的系数不是常数,那么它可能不属于这些类别中的任何一个,而是属于混合类型。一个简单但重要的例子是欧拉-特里科米方程 |
| | | |
| | | |
第500行: |
第500行: |
| <math>u_{xx} = xu_{yy},</math> | | <math>u_{xx} = xu_{yy},</math> |
| | | |
− | 数学广州欢聚时代 / 数学
| |
| | | |
| | | |
第508行: |
第507行: |
| which is called elliptic-hyperbolic because it is elliptic in the region , hyperbolic in the region , and degenerate parabolic on the line 0}}. | | which is called elliptic-hyperbolic because it is elliptic in the region , hyperbolic in the region , and degenerate parabolic on the line 0}}. |
| | | |
− | 它在区域上是椭圆型,在区域上是双曲型,在线上是退化抛物型,因此称之为椭圆-双曲型。
| + | 它在 {{math|''x'' < 0}} 的区域上是椭圆形,在 {{math|''x'' > 0}} 区域上是双曲形,在 {{math|''x'' {{=}} 0}}这条线上是退化抛物线形,因此称之为椭圆-双曲型。 |
| | | |
| <!-- | | <!-- |
第520行: |
第519行: |
| fill in: Dirichlet and Neumann boundaries, hyperbolic/parabolic/elliptic separation of variables, Fourier analysis, Green's functions ...--> | | fill in: Dirichlet and Neumann boundaries, hyperbolic/parabolic/elliptic separation of variables, Fourier analysis, Green's functions ...--> |
| | | |
− | 填写: Dirichlet 和 Neumann 边界,双曲 / 抛物线 / 椭圆分离变量法,傅立叶变换家族中的关系,Green 函数... -- | + | 填写: Dirichlet 和 Neumann 边界,双曲 / 抛物线 / 椭圆分离变量法,傅立叶分析,Green 函数... -- |
− | | |
− | | |
| | | |
| === Infinite-order PDEs in quantum mechanics === | | === Infinite-order PDEs in quantum mechanics === |