更改

删除10字节 、 2020年10月24日 (六) 21:12
第857行: 第857行:     
== The energy method ==
 
== The energy method ==
 +
能量法
    
The energy method is a mathematical procedure that can be used to verify well-posedness of initial-boundary-value-problems.<ref>{{cite book |title=High Order Difference Methods for Time Dependent PDE
 
The energy method is a mathematical procedure that can be used to verify well-posedness of initial-boundary-value-problems.<ref>{{cite book |title=High Order Difference Methods for Time Dependent PDE
第868行: 第869行:  
|first=Bertil|last=Gustafsson|publisher=Springer|year=2008|isbn=978-3-540-74992-9|doi=10.1007/978-3-540-74993-6}}</ref> In the following example the energy method is used to decide where and which boundary conditions should be imposed such that the resulting IBVP is well-posed. Consider the one-dimensional hyperbolic PDE given by
 
|first=Bertil|last=Gustafsson|publisher=Springer|year=2008|isbn=978-3-540-74992-9|doi=10.1007/978-3-540-74993-6}}</ref> In the following example the energy method is used to decide where and which boundary conditions should be imposed such that the resulting IBVP is well-posed. Consider the one-dimensional hyperbolic PDE given by
   −
| first Bertil | last Gustafsson | publisher | Springer | year 2008 | isbn 978-3-540-74992-9 | doi 10.1007 / 978-3-540-74993-6} / ref 在下面的例子中,使用能量方法来决定应该施加哪些边界条件,使得得到的 IBVP 适定。考虑一维双曲偏微分方程
+
| first Bertil | last Gustafsson | publisher | Springer | year 2008 | isbn 978-3-540-74992-9 | doi 10.1007 / 978-3-540-74993-6} / ref 在下面的例子中,使用能量方法来决定应该施加哪些边界条件,使得得到的 IBVP适定。考虑一维双曲偏微分方程
      第876行: 第877行:  
  <math>\frac{\partial u}{\partial t} + \alpha \frac{\partial u}{\partial x} = 0, \quad x \in [a,b], \operatorname t > 0,</math>
 
  <math>\frac{\partial u}{\partial t} + \alpha \frac{\partial u}{\partial x} = 0, \quad x \in [a,b], \operatorname t > 0,</math>
   −
在[ a,b ]中,操作者名为 t 0,/ math
        第884行: 第884行:  
where <math>\alpha \neq 0</math> is a constant and <math>u(x,t)</math> is an unknown function with initial condition <math>u(x,0) = f(x)</math>. Multiplying with <math>u</math> and integrating over the domain gives
 
where <math>\alpha \neq 0</math> is a constant and <math>u(x,t)</math> is an unknown function with initial condition <math>u(x,0) = f(x)</math>. Multiplying with <math>u</math> and integrating over the domain gives
   −
其中 math alpha neq 0 / math 是常数,math u (x,t) / math 是未知函数,初始条件是 math u (x,0) f (x) / math。使用 math u / math 进行乘法,并在域上进行集成
+
其中 <math>\alpha \neq 0</math> 是常数,并且 <math>u(x,t)</math> 是未知函数,初始条件是 <math>u(x,0) = f(x)</math>。乘以 <math>u</math> 并在域上进行积分。
      第891行: 第891行:     
  <math>\int_a^b u \frac{\partial u}{\partial t} \operatorname dx + \alpha \int _a ^b u \frac{\partial u}{\partial x} \operatorname dx = 0.</math>
 
  <math>\int_a^b u \frac{\partial u}{\partial t} \operatorname dx + \alpha \int _a ^b u \frac{\partial u}{\partial x} \operatorname dx = 0.</math>
  −
部分操作名称 dx +  alpha  int a ^ b u  frac 部分操作名称 dx 0. / math
  −
        第908行: 第905行:  
  <math>\int _a ^b u \frac{\partial u}{\partial t} \operatorname dx = \frac{1}{2} \frac{\partial}{\partial t} \vert \vert u \vert \vert ^2 \quad \text{and} \quad \int _a ^b u \frac{\partial u}{\partial x} \operatorname dx = \frac{1}{2} u(b,t)^2 - \frac{1}{2} u(a,t)^2,.</math>
 
  <math>\int _a ^b u \frac{\partial u}{\partial t} \operatorname dx = \frac{1}{2} \frac{\partial}{\partial t} \vert \vert u \vert \vert ^2 \quad \text{and} \quad \int _a ^b u \frac{\partial u}{\partial x} \operatorname dx = \frac{1}{2} u(b,t)^2 - \frac{1}{2} u(a,t)^2,.</math>
   −
数学内部一个 ^ b u  frac {1}和一个 ^ b u  frac {1}和一个 ^ b u  frac {1}(b,t)2-frac {1}{2} u (a,t)2,。 数学
+
 
    
where integration by parts has been used for the second relationship, we get
 
where integration by parts has been used for the second relationship, we get
第914行: 第911行:  
where integration by parts has been used for the second relationship, we get
 
where integration by parts has been used for the second relationship, we get
   −
第二种关系采用了部分整合,明白了吗
+
第二个关系中采用了分部积分法,我们可以得到
 
        第922行: 第918行:  
  <math>\frac{\partial}{\partial t} \vert \vert u \vert \vert ^2 + \alpha u(b,t)^2 - \alpha u(a,t)^2 = 0.</math>
 
  <math>\frac{\partial}{\partial t} \vert \vert u \vert \vert ^2 + \alpha u(b,t)^2 - \alpha u(a,t)^2 = 0.</math>
   −
部分 t-vert u-vert 2 +  alpha u (b,t) ^ 2-alpha u (a,t) ^ 20. / math
+
 
      第930行: 第926行:  
Here <math>\vert \vert \cdot \vert \vert</math> denotes the standard L2-norm.
 
Here <math>\vert \vert \cdot \vert \vert</math> denotes the standard L2-norm.
   −
在这里,math  vert vert cdot vert math 表示标准的 L2-norm。
+
在这里,<math>\vert \vert \cdot \vert \vert</math> 表示标准的 L2-正则。
    
For well-posedness we require that the energy of the solution is non-increasing, i.e. that <math>\frac{\partial}{\partial t} \vert \vert u \vert \vert ^2 \leq 0</math>, which is achieved by specifying <math>u</math> at <math>x = a</math> if <math>\alpha > 0</math> and at <math>x = b</math> if <math>\alpha < 0</math>. This corresponds to only imposing boundary conditions at the inflow. Note that well-posedness allows for growth in terms of data (initial and boundary) and thus it is sufficient to show that <math>\frac{\partial}{\partial t} \vert \vert u \vert \vert ^2 \leq 0</math> holds when all data is set to zero.
 
For well-posedness we require that the energy of the solution is non-increasing, i.e. that <math>\frac{\partial}{\partial t} \vert \vert u \vert \vert ^2 \leq 0</math>, which is achieved by specifying <math>u</math> at <math>x = a</math> if <math>\alpha > 0</math> and at <math>x = b</math> if <math>\alpha < 0</math>. This corresponds to only imposing boundary conditions at the inflow. Note that well-posedness allows for growth in terms of data (initial and boundary) and thus it is sufficient to show that <math>\frac{\partial}{\partial t} \vert \vert u \vert \vert ^2 \leq 0</math> holds when all data is set to zero.
第936行: 第932行:  
For well-posedness we require that the energy of the solution is non-increasing, i.e. that <math>\frac{\partial}{\partial t} \vert \vert u \vert \vert ^2 \leq 0</math>, which is achieved by specifying <math>u</math> at <math>x = a</math> if <math>\alpha > 0</math> and at <math>x = b</math> if <math>\alpha < 0</math>. This corresponds to only imposing boundary conditions at the inflow. Note that well-posedness allows for growth in terms of data (initial and boundary) and thus it is sufficient to show that <math>\frac{\partial}{\partial t} \vert \vert u \vert \vert ^2 \leq 0</math> holds when all data is set to zero.
 
For well-posedness we require that the energy of the solution is non-increasing, i.e. that <math>\frac{\partial}{\partial t} \vert \vert u \vert \vert ^2 \leq 0</math>, which is achieved by specifying <math>u</math> at <math>x = a</math> if <math>\alpha > 0</math> and at <math>x = b</math> if <math>\alpha < 0</math>. This corresponds to only imposing boundary conditions at the inflow. Note that well-posedness allows for growth in terms of data (initial and boundary) and thus it is sufficient to show that <math>\frac{\partial}{\partial t} \vert \vert u \vert \vert ^2 \leq 0</math> holds when all data is set to zero.
   −
对于适定性,我们要求解的能量是不增加的,即。部分 t-vert u-vert 2-leq 0 / math 通过在 math x a / math if math alpha 0 / math math x b / math if math alpha 0 / math 中指定数学 u / math 来实现。这只相当于在进水口附加边界条件。注意,适定性允许在数据(初始和边界)方面的增长,因此它足以证明当所有数据设置为零时 math frac { partial t } vert u vert 2 leq 0 / math 持有。
+
对于适定性,我们要求解的能量是不增加的,即 <math>\frac{\partial}{\partial t} \vert \vert u \vert \vert ^2 \leq 0</math> ,这种关系可以通过在<math>x = a</math>处 (如果 <math>\alpha > 0</math>) 以及 <math>x = b</math>处 (如果 <math>\alpha < 0</math>)指定<math>u</math>的值来实现。这只相当于在入流处附加边界条件。注意,适定性允许在数据(初始和边界)上的增长,因此它足以表明当所有数据设置为零时应有 <math>\frac{\partial}{\partial t} \vert \vert u \vert \vert ^2 \leq 0</math>。
 +
==[[用户:Yuling|Yuling]]([[用户讨论:Yuling|讨论]])“This corresponds to only imposing boundary conditions at the inflow.” 这句话中的inflow不是很理解
    
==Notes==
 
==Notes==
108

个编辑