第2行: |
第2行: |
| | | |
| {{Short description|Measure of relative information in probability theory}} | | {{Short description|Measure of relative information in probability theory}} |
− |
| |
| {{Information theory}} | | {{Information theory}} |
− |
| |
− |
| |
| | | |
| [[Image:Entropy-mutual-information-relative-entropy-relation-diagram.svg|thumb|256px|right|[[Venn diagram]] showing additive and subtractive relationships various [[Quantities of information|information measures]] associated with correlated variables <math>X</math> and <math>Y</math>. The area contained by both circles is the [[joint entropy]] <math>\Eta(X,Y)</math>. The circle on the left (red and violet) is the [[Entropy (information theory)|individual entropy]] <math>\Eta(X)</math>, with the red being the [[conditional entropy]] <math>\Eta(X|Y)</math>. The circle on the right (blue and violet) is <math>\Eta(Y)</math>, with the blue being <math>\Eta(Y|X)</math>. The violet is the [[mutual information]] <math>\operatorname{I}(X;Y)</math>.]] | | [[Image:Entropy-mutual-information-relative-entropy-relation-diagram.svg|thumb|256px|right|[[Venn diagram]] showing additive and subtractive relationships various [[Quantities of information|information measures]] associated with correlated variables <math>X</math> and <math>Y</math>. The area contained by both circles is the [[joint entropy]] <math>\Eta(X,Y)</math>. The circle on the left (red and violet) is the [[Entropy (information theory)|individual entropy]] <math>\Eta(X)</math>, with the red being the [[conditional entropy]] <math>\Eta(X|Y)</math>. The circle on the right (blue and violet) is <math>\Eta(Y)</math>, with the blue being <math>\Eta(Y|X)</math>. The violet is the [[mutual information]] <math>\operatorname{I}(X;Y)</math>.]] |
− |
| |
− | [[Venn diagram showing additive and subtractive relationships various information measures associated with correlated variables <math>X</math> and <math>Y</math>. The area contained by both circles is the joint entropy <math>\Eta(X,Y)</math>. The circle on the left (red and violet) is the individual entropy <math>\Eta(X)</math>, with the red being the conditional entropy <math>\Eta(X|Y)</math>. The circle on the right (blue and violet) is <math>\Eta(Y)</math>, with the blue being <math>\Eta(Y|X)</math>. The violet is the mutual information <math>\operatorname{I}(X;Y)</math>.]]
| |
− |
| |
− | 文恩图显示了相加和相减的关系,各种信息测量与相关变量相关。两个圆圈所包含的区域是联合熵。左边的圆圈(红色和紫色)代表个体熵。左边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体。右边的圆圈(蓝色和紫色)是 < math > Eta (y) </math > ,蓝色的是 < math > Eta (y | x) </math > 。紫色是共同的信息[ math > 操作者名称{ i }(x; y) </math > ]
| |
− |
| |
− |
| |
| | | |
| In [[information theory]], the '''conditional entropy''' quantifies the amount of information needed to describe the outcome of a [[random variable]] <math>Y</math> given that the value of another random variable <math>X</math> is known. Here, information is measured in [[Shannon (unit)|shannon]]s, [[Nat (unit)|nat]]s, or [[Hartley (unit)|hartley]]s. The ''entropy of <math>Y</math> conditioned on <math>X</math>'' is written as <math>\Eta(Y|X)</math>. | | In [[information theory]], the '''conditional entropy''' quantifies the amount of information needed to describe the outcome of a [[random variable]] <math>Y</math> given that the value of another random variable <math>X</math> is known. Here, information is measured in [[Shannon (unit)|shannon]]s, [[Nat (unit)|nat]]s, or [[Hartley (unit)|hartley]]s. The ''entropy of <math>Y</math> conditioned on <math>X</math>'' is written as <math>\Eta(Y|X)</math>. |
− |
| |
− | In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable <math>Y</math> given that the value of another random variable <math>X</math> is known. Here, information is measured in shannons, nats, or hartleys. The entropy of <math>Y</math> conditioned on <math>X</math> is written as <math>\Eta(Y|X)</math>.
| |
− |
| |
− | 在信息论中,如果另一个随机变量的值是已知的,那么条件熵就会量化描述一个随机变量的结果所需的信息量。在这里,信息是用夏农、纳特斯或哈特利来衡量的。“数学”的熵取决于“数学” ,“ x”表示“数学” ,“埃塔”表示“数学”。
| |
− |
| |
− |
| |
| | | |
| == Definition == | | == Definition == |
− |
| |
| The conditional entropy of <math>Y</math> given <math>X</math> is defined as | | The conditional entropy of <math>Y</math> given <math>X</math> is defined as |
− |
| |
− | The conditional entropy of <math>Y</math> given <math>X</math> is defined as
| |
− |
| |
− | 给定的 x 条件熵被定义为
| |
− |
| |
− |
| |
− |
| |
− | {{Equation box 1
| |
| | | |
| {{Equation box 1 | | {{Equation box 1 |
− |
| |
− | {方程式方框1
| |
− |
| |
| |indent = | | |indent = |
− |
| |
− | |indent =
| |
− |
| |
− | 2012年10月22日
| |
− |
| |
− | |title=
| |
− |
| |
| |title= | | |title= |
− |
| |
− | 2012年10月11日
| |
− |
| |
| |equation = {{NumBlk||<math>\Eta(Y|X)\ = -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}</math>|{{EquationRef|Eq.1}}}} | | |equation = {{NumBlk||<math>\Eta(Y|X)\ = -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}</math>|{{EquationRef|Eq.1}}}} |
− |
| |
− | |equation = }}
| |
− |
| |
− | | equation = }
| |
− |
| |
| |cellpadding= 6 | | |cellpadding= 6 |
− |
| |
− | |cellpadding= 6
| |
− |
| |
− | 6
| |
− |
| |
| |border | | |border |
− |
| |
− | |border
| |
− |
| |
− | 边界
| |
− |
| |
| |border colour = #0073CF | | |border colour = #0073CF |
− |
| |
− | |border colour = #0073CF
| |
− |
| |
− | 0073CF
| |
− |
| |
− | |background colour=#F5FFFA}}
| |
− |
| |
| |background colour=#F5FFFA}} | | |background colour=#F5FFFA}} |
− |
| |
− | 5/fffa }}
| |
− |
| |
− |
| |
| | | |
| where <math>\mathcal X</math> and <math>\mathcal Y</math> denote the [[Support (mathematics)|support sets]] of <math>X</math> and <math>Y</math>. | | where <math>\mathcal X</math> and <math>\mathcal Y</math> denote the [[Support (mathematics)|support sets]] of <math>X</math> and <math>Y</math>. |
− |
| |
− | where <math>\mathcal X</math> and <math>\mathcal Y</math> denote the support sets of <math>X</math> and <math>Y</math>.
| |
− |
| |
− | 这里 < math > 数学 x </math > 和 < math > > 数学 y </math > 表示 < math > x </math > 和 < math > y </math > 的支持集。
| |
− |
| |
− |
| |
| | | |
| ''Note:'' It is conventioned that the expressions <math>0 \log 0</math> and <math>0 \log c/0</math> for fixed <math>c > 0</math> should be treated as being equal to zero. This is because <math>\lim_{\theta\to0^+} \theta\, \log \,c/\theta = 0</math> and <math>\lim_{\theta\to0^+} \theta\, \log \theta = 0</math><ref>{{Cite web|url=http://www.inference.org.uk/mackay/itprnn/book.html|title=David MacKay: Information Theory, Pattern Recognition and Neural Networks: The Book|website=www.inference.org.uk|access-date=2019-10-25}}</ref> <!-- because p(x,y) could still equal 0 even if p(x) != 0 and p(y) != 0. What about p(x,y)=p(x)=0? --> | | ''Note:'' It is conventioned that the expressions <math>0 \log 0</math> and <math>0 \log c/0</math> for fixed <math>c > 0</math> should be treated as being equal to zero. This is because <math>\lim_{\theta\to0^+} \theta\, \log \,c/\theta = 0</math> and <math>\lim_{\theta\to0^+} \theta\, \log \theta = 0</math><ref>{{Cite web|url=http://www.inference.org.uk/mackay/itprnn/book.html|title=David MacKay: Information Theory, Pattern Recognition and Neural Networks: The Book|website=www.inference.org.uk|access-date=2019-10-25}}</ref> <!-- because p(x,y) could still equal 0 even if p(x) != 0 and p(y) != 0. What about p(x,y)=p(x)=0? --> |
− |
| |
− | Note: It is conventioned that the expressions <math>0 \log 0</math> and <math>0 \log c/0</math> for fixed <math>c > 0</math> should be treated as being equal to zero. This is because <math>\lim_{\theta\to0^+} \theta\, \log \,c/\theta = 0</math> and <math>\lim_{\theta\to0^+} \theta\, \log \theta = 0</math>
| |
− |
| |
− | 注意: 常规的表达式 < math > 0 log 0 </math > 和 < math > 0 log c/0 </math > 对于 fixed < math > c > 0 </math > 应该被视为等于零。这是因为 < math > lim { theta to0 ^ + } theta,log,c/theta = 0 </math > 和 < math > lim { theta to0 ^ + } theta,log theta = 0 </math >
| |
− |
| |
− |
| |
| | | |
| Intuitive explanation of the definition : | | Intuitive explanation of the definition : |
− |
| |
− | The chain rule follows from the above definition of conditional entropy:
| |
− |
| |
− | 链式规则遵循了上述条件熵的定义:
| |
− |
| |
| According to the definition, <math>\displaystyle H( Y|X) =\mathbb{E}( \ f( X,Y) \ )</math> where <math>\displaystyle f:( x,y) \ \rightarrow -\log( \ p( y|x) \ ) .</math> <math>\displaystyle f</math> associates to <math>\displaystyle ( x,y)</math> the information content of <math>\displaystyle ( Y=y)</math> given <math>\displaystyle (X=x)</math>, which is the amount of information needed to describe the event <math>\displaystyle (Y=y)</math> given <math>(X=x)</math>. According to the law of large numbers, <math>\displaystyle H(Y|X)</math> is the arithmetic mean of a large number of independent realizations of <math>\displaystyle f(X,Y)</math>. | | According to the definition, <math>\displaystyle H( Y|X) =\mathbb{E}( \ f( X,Y) \ )</math> where <math>\displaystyle f:( x,y) \ \rightarrow -\log( \ p( y|x) \ ) .</math> <math>\displaystyle f</math> associates to <math>\displaystyle ( x,y)</math> the information content of <math>\displaystyle ( Y=y)</math> given <math>\displaystyle (X=x)</math>, which is the amount of information needed to describe the event <math>\displaystyle (Y=y)</math> given <math>(X=x)</math>. According to the law of large numbers, <math>\displaystyle H(Y|X)</math> is the arithmetic mean of a large number of independent realizations of <math>\displaystyle f(X,Y)</math>. |
− |
| |
− |
| |
− |
| |
− | <math>\begin{align}
| |
− |
| |
− | 1.1.1.2.2.2.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.4.3.3.3.3.3.3.3.3.3.3.3.4.3.3.3.3.3.3.3.3.3
| |
| | | |
| == Motivation == | | == Motivation == |
− |
| |
− | \Eta(Y|X) &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \left(\frac{p(x)}{p(x,y)} \right) \\[4pt]
| |
− |
| |
− | Eta (y | x) & = sum _ { x in mathcal x,y in mathcal y } p (x,y) log left (frac { p (x)}{ p (x,y)} right)[4 pt ]
| |
− |
| |
| Let <math>\Eta(Y|X=x)</math> be the [[Shannon Entropy|entropy]] of the discrete random variable <math>Y</math> conditioned on the discrete random variable <math>X</math> taking a certain value <math>x</math>. Denote the support sets of <math>X</math> and <math>Y</math> by <math>\mathcal X</math> and <math>\mathcal Y</math>. Let <math>Y</math> have [[probability mass function]] <math>p_Y{(y)}</math>. The unconditional entropy of <math>Y</math> is calculated as <math>\Eta(Y) := \mathbb{E}[\operatorname{I}(Y)]</math>, i.e. | | Let <math>\Eta(Y|X=x)</math> be the [[Shannon Entropy|entropy]] of the discrete random variable <math>Y</math> conditioned on the discrete random variable <math>X</math> taking a certain value <math>x</math>. Denote the support sets of <math>X</math> and <math>Y</math> by <math>\mathcal X</math> and <math>\mathcal Y</math>. Let <math>Y</math> have [[probability mass function]] <math>p_Y{(y)}</math>. The unconditional entropy of <math>Y</math> is calculated as <math>\Eta(Y) := \mathbb{E}[\operatorname{I}(Y)]</math>, i.e. |
− |
| |
− | &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)(\log (p(x))-\log (p(x,y))) \\[4pt]
| |
− |
| |
− | & = sum _ { x in mathcal x,y in mathcal y } p (x,y)(log (p (x))-log (p (x,y)))[4 pt ]
| |
− |
| |
− |
| |
− |
| |
− | &= -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log (p(x,y)) + \sum_{x\in\mathcal X, y\in\mathcal Y}{p(x,y)\log(p(x))} \\[4pt]
| |
− |
| |
− | & =-sum _ { x in mathcal x,y in mathcal y } p (x,y) log (p (x,y)) + sum _ { x in mathcal x,y in mathcal y }{ p (x,y) log (p (x))}[4 pt ]
| |
| | | |
| :<math>\Eta(Y) = \sum_{y\in\mathcal Y} {\mathrm{Pr}(Y=y)\,\mathrm{I}(y)} | | :<math>\Eta(Y) = \sum_{y\in\mathcal Y} {\mathrm{Pr}(Y=y)\,\mathrm{I}(y)} |
− |
| |
− | & = \Eta(X,Y) + \sum_{x \in \mathcal X} p(x)\log (p(x) ) \\[4pt]
| |
− |
| |
− | & = Eta (x,y) + sum _ { x in mathcal x } p (x) log (p (x))[4 pt ]
| |
− |
| |
| = -\sum_{y\in\mathcal Y} {p_Y(y) \log_2{p_Y(y)}},</math> | | = -\sum_{y\in\mathcal Y} {p_Y(y) \log_2{p_Y(y)}},</math> |
− |
| |
− | & = \Eta(X,Y) - \Eta(X).
| |
− |
| |
− | & = Eta (x,y)-Eta (x).
| |
− |
| |
− |
| |
− |
| |
− | \end{align}</math>
| |
− |
| |
− | 结束{ align } </math >
| |
| | | |
| where <math>\operatorname{I}(y_i)</math> is the [[information content]] of the [[Outcome (probability)|outcome]] of <math>Y</math> taking the value <math>y_i</math>. The entropy of <math>Y</math> conditioned on <math>X</math> taking the value <math>x</math> is defined analogously by [[conditional expectation]]: | | where <math>\operatorname{I}(y_i)</math> is the [[information content]] of the [[Outcome (probability)|outcome]] of <math>Y</math> taking the value <math>y_i</math>. The entropy of <math>Y</math> conditioned on <math>X</math> taking the value <math>x</math> is defined analogously by [[conditional expectation]]: |
− |
| |
− |
| |
− |
| |
− | In general, a chain rule for multiple random variables holds:
| |
− |
| |
− | 一般来说,多个随机变量的链式规则适用于:
| |
| | | |
| :<math>\Eta(Y|X=x) | | :<math>\Eta(Y|X=x) |
− |
| |
| = -\sum_{y\in\mathcal Y} {\Pr(Y = y|X=x) \log_2{\Pr(Y = y|X=x)}}.</math> | | = -\sum_{y\in\mathcal Y} {\Pr(Y = y|X=x) \log_2{\Pr(Y = y|X=x)}}.</math> |
− |
| |
− | <math> \Eta(X_1,X_2,\ldots,X_n) =
| |
− |
| |
− | < math > Eta (x1,x2,ldots,xn) =
| |
− |
| |
| Note that <math>\Eta(Y|X)</math> is the result of averaging <math>\Eta(Y|X=x)</math> over all possible values <math>x</math> that <math>X</math> may take. Also, if the above sum is taken over a sample <math>y_1, \dots, y_n</math>, the expected value <math>E_X[ \Eta(y_1, \dots, y_n \mid X = x)]</math> is known in some domains as '''equivocation'''.<ref>{{cite journal|author1=Hellman, M.|author2=Raviv, J.|year=1970|title=Probability of error, equivocation, and the Chernoff bound|journal=IEEE Transactions on Information Theory|volume=16|issue=4|pp=368-372}}</ref> | | Note that <math>\Eta(Y|X)</math> is the result of averaging <math>\Eta(Y|X=x)</math> over all possible values <math>x</math> that <math>X</math> may take. Also, if the above sum is taken over a sample <math>y_1, \dots, y_n</math>, the expected value <math>E_X[ \Eta(y_1, \dots, y_n \mid X = x)]</math> is known in some domains as '''equivocation'''.<ref>{{cite journal|author1=Hellman, M.|author2=Raviv, J.|year=1970|title=Probability of error, equivocation, and the Chernoff bound|journal=IEEE Transactions on Information Theory|volume=16|issue=4|pp=368-372}}</ref> |
− |
| |
− | \sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) </math>
| |
− |
| |
− | Sum { i = 1} ^ n Eta (x _ i | x _ 1,ldots,x _ { i-1}) </math >
| |
− |
| |
− |
| |
| | | |
| Given [[Discrete random variable|discrete random variables]] <math>X</math> with image <math>\mathcal X</math> and <math>Y</math> with image <math>\mathcal Y</math>, the conditional entropy of <math>Y</math> given <math>X</math> is defined as the weighted sum of <math>\Eta(Y|X=x)</math> for each possible value of <math>x</math>, using <math>p(x)</math> as the weights:<ref name=cover1991>{{cite book|isbn=0-471-06259-6|year=1991|authorlink1=Thomas M. Cover|author1=T. Cover|author2=J. Thomas|title=Elements of Information Theory|url=https://archive.org/details/elementsofinform0000cove|url-access=registration}}</ref>{{rp|15}} | | Given [[Discrete random variable|discrete random variables]] <math>X</math> with image <math>\mathcal X</math> and <math>Y</math> with image <math>\mathcal Y</math>, the conditional entropy of <math>Y</math> given <math>X</math> is defined as the weighted sum of <math>\Eta(Y|X=x)</math> for each possible value of <math>x</math>, using <math>p(x)</math> as the weights:<ref name=cover1991>{{cite book|isbn=0-471-06259-6|year=1991|authorlink1=Thomas M. Cover|author1=T. Cover|author2=J. Thomas|title=Elements of Information Theory|url=https://archive.org/details/elementsofinform0000cove|url-access=registration}}</ref>{{rp|15}} |
− |
| |
− | It has a similar form to chain rule in probability theory, except that addition instead of multiplication is used.
| |
− |
| |
− | 除了用加法代替乘法之外,它的形式与概率论的链式法则相似。
| |
− |
| |
− |
| |
| | | |
| :<math> | | :<math> |
− |
| |
| \begin{align} | | \begin{align} |
− |
| |
− | Bayes' rule for conditional entropy states
| |
− |
| |
− | 条件熵的贝叶斯规则
| |
− |
| |
| \Eta(Y|X)\ &\equiv \sum_{x\in\mathcal X}\,p(x)\,\Eta(Y|X=x)\\ | | \Eta(Y|X)\ &\equiv \sum_{x\in\mathcal X}\,p(x)\,\Eta(Y|X=x)\\ |
− |
| |
− | <math>\Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y).</math>
| |
− |
| |
− | [数学] Eta (y | x) ,= ,Eta (x | y)-Eta (x) + Eta (y)
| |
− |
| |
| & =-\sum_{x\in\mathcal X} p(x)\sum_{y\in\mathcal Y}\,p(y|x)\,\log\, p(y|x)\\ | | & =-\sum_{x\in\mathcal X} p(x)\sum_{y\in\mathcal Y}\,p(y|x)\,\log\, p(y|x)\\ |
− |
| |
| & =-\sum_{x\in\mathcal X}\sum_{y\in\mathcal Y}\,p(x,y)\,\log\,p(y|x)\\ | | & =-\sum_{x\in\mathcal X}\sum_{y\in\mathcal Y}\,p(x,y)\,\log\,p(y|x)\\ |
− |
| |
− | Proof. <math>\Eta(Y|X) = \Eta(X,Y) - \Eta(X)</math> and <math>\Eta(X|Y) = \Eta(Y,X) - \Eta(Y)</math>. Symmetry entails <math>\Eta(X,Y) = \Eta(Y,X)</math>. Subtracting the two equations implies Bayes' rule.
| |
− |
| |
− | 证据。Eta (y | x) = Eta (x,y)-Eta (x) | math > Eta (x | y) = Eta (y,x)-Eta (y).对称意味着 Eta (x,y) = Eta (y,x)。减去这两个方程就得到了贝叶斯定律。
| |
− |
| |
| & =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log\,p(y|x)\\ | | & =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log\,p(y|x)\\ |
− |
| |
| & =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}. \\ | | & =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}. \\ |
− |
| |
− | If <math>Y</math> is conditionally independent of <math>Z</math> given <math>X</math> we have:
| |
− |
| |
− | 如果[数学] y </math > 是条件独立于[数学] z </math > 给定 < 数学 > x </math > 我们有:
| |
− |
| |
| & = \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x)} {p(x,y)}. \\ | | & = \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x)} {p(x,y)}. \\ |
− |
| |
| \end{align} | | \end{align} |
− |
| |
− | <math>\Eta(Y|X,Z) \,=\, \Eta(Y|X).</math>
| |
− |
| |
− | [ math ] Eta (y | x,z) ,= ,Eta (y | x)
| |
− |
| |
| </math> | | </math> |
− |
| |
− |
| |
| | | |
| <!-- This paragraph is incorrect; the last line is not the KL divergence between any two distributions, since p(x) is [in general] not a valid distribution over the domains of X and Y. The last formula above is the [[Kullback-Leibler divergence]], also known as relative entropy. Relative entropy is always positive, and vanishes if and only if <math>p(x,y) = p(x)</math>. This is when knowing <math>x</math> tells us everything about <math>y</math>. ADDED: Could this comment be out of date since the KL divergence is not mentioned above? November 2014 --> | | <!-- This paragraph is incorrect; the last line is not the KL divergence between any two distributions, since p(x) is [in general] not a valid distribution over the domains of X and Y. The last formula above is the [[Kullback-Leibler divergence]], also known as relative entropy. Relative entropy is always positive, and vanishes if and only if <math>p(x,y) = p(x)</math>. This is when knowing <math>x</math> tells us everything about <math>y</math>. ADDED: Could this comment be out of date since the KL divergence is not mentioned above? November 2014 --> |
− |
| |
− | For any <math>X</math> and <math>Y</math>:
| |
− |
| |
− | 对于任意的 < math > x </math > 和 < math > > y </math > :
| |
− |
| |
− |
| |
− |
| |
− | <math display="block">\begin{align}
| |
− |
| |
− | (数学显示 = “ block” > begin { align })
| |
| | | |
| ==Properties== | | ==Properties== |
− |
| |
− | \Eta(Y|X) &\le \Eta(Y) \, \\
| |
− |
| |
− | 埃塔(y | x)及埃塔(y) ,
| |
− |
| |
| ===Conditional entropy equals zero=== | | ===Conditional entropy equals zero=== |
− |
| |
− | \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\
| |
− |
| |
− | eta (x,y) & = Eta (x | y) + Eta (y | x) + 操作数名{ i }(x; y) ,qquad
| |
− |
| |
| <math>\Eta(Y|X)=0</math> if and only if the value of <math>Y</math> is completely determined by the value of <math>X</math>. | | <math>\Eta(Y|X)=0</math> if and only if the value of <math>Y</math> is completely determined by the value of <math>X</math>. |
− |
| |
− | \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\
| |
− |
| |
− | Eta (x,y) & = Eta (x) + Eta (y)-操作员名称{ i }(x; y) ,,
| |
− |
| |
− |
| |
− |
| |
− | \operatorname{I}(X;Y) &\le \Eta(X),\,
| |
− |
| |
− | 操作者名{ i }(x; y) & le Eta (x) ,,
| |
| | | |
| ===Conditional entropy of independent random variables=== | | ===Conditional entropy of independent random variables=== |
− |
| |
− | \end{align}</math>
| |
− |
| |
− | 结束{ align } </math >
| |
− |
| |
| Conversely, <math>\Eta(Y|X) = \Eta(Y)</math> if and only if <math>Y</math> and <math>X</math> are [[independent random variables]]. | | Conversely, <math>\Eta(Y|X) = \Eta(Y)</math> if and only if <math>Y</math> and <math>X</math> are [[independent random variables]]. |
− |
| |
− |
| |
− |
| |
− | where <math>\operatorname{I}(X;Y)</math> is the mutual information between <math>X</math> and <math>Y</math>.
| |
− |
| |
− | 其中,“数学”和“数学”之间的相互信息。
| |
| | | |
| ===Chain rule=== | | ===Chain rule=== |
− |
| |
| Assume that the combined system determined by two random variables <math>X</math> and <math>Y</math> has [[joint entropy]] <math>\Eta(X,Y)</math>, that is, we need <math>\Eta(X,Y)</math> bits of information on average to describe its exact state. Now if we first learn the value of <math>X</math>, we have gained <math>\Eta(X)</math> bits of information. Once <math>X</math> is known, we only need <math>\Eta(X,Y)-\Eta(X)</math> bits to describe the state of the whole system. This quantity is exactly <math>\Eta(Y|X)</math>, which gives the ''chain rule'' of conditional entropy: | | Assume that the combined system determined by two random variables <math>X</math> and <math>Y</math> has [[joint entropy]] <math>\Eta(X,Y)</math>, that is, we need <math>\Eta(X,Y)</math> bits of information on average to describe its exact state. Now if we first learn the value of <math>X</math>, we have gained <math>\Eta(X)</math> bits of information. Once <math>X</math> is known, we only need <math>\Eta(X,Y)-\Eta(X)</math> bits to describe the state of the whole system. This quantity is exactly <math>\Eta(Y|X)</math>, which gives the ''chain rule'' of conditional entropy: |
− |
| |
− | For independent <math>X</math> and <math>Y</math>:
| |
− |
| |
− | 对于独立的《数学》和《数学》 :
| |
− |
| |
− |
| |
| | | |
| :<math>\Eta(Y|X)\, = \, \Eta(X,Y)- \Eta(X).</math><ref name=cover1991 />{{rp|17}} | | :<math>\Eta(Y|X)\, = \, \Eta(X,Y)- \Eta(X).</math><ref name=cover1991 />{{rp|17}} |
− |
| |
− | <math>\Eta(Y|X) = \Eta(Y) </math> and <math>\Eta(X|Y) = \Eta(X) \, </math>
| |
− |
| |
− | Eta (y | x) = Eta (y) </math > and < math > Eta (x | y) = Eta (x) ,</math >
| |
− |
| |
− |
| |
| | | |
| The chain rule follows from the above definition of conditional entropy: | | The chain rule follows from the above definition of conditional entropy: |
− |
| |
− | Although the specific-conditional entropy <math>\Eta(X|Y=y)</math> can be either less or greater than <math>\Eta(X)</math> for a given random variate <math>y</math> of <math>Y</math>, <math>\Eta(X|Y)</math> can never exceed <math>\Eta(X)</math>.
| |
− |
| |
− | 虽然对于给定的随机变量来说,特定条件熵的 Eta (x | y = y) </math > </math > 可能比 </math > Eta (x) </math > </math > ,< math > Eta (x | y) </math > 不能超过 math > Eta (x) </math > 。
| |
− |
| |
− |
| |
| | | |
| :<math>\begin{align} | | :<math>\begin{align} |
− |
| |
| \Eta(Y|X) &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \left(\frac{p(x)}{p(x,y)} \right) \\[4pt] | | \Eta(Y|X) &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \left(\frac{p(x)}{p(x,y)} \right) \\[4pt] |
− |
| |
| &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)(\log (p(x))-\log (p(x,y))) \\[4pt] | | &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)(\log (p(x))-\log (p(x,y))) \\[4pt] |
− |
| |
− | The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called conditional differential (or continuous) entropy. Let <math>X</math> and <math>Y</math> be a continuous random variables with a joint probability density function <math>f(x,y)</math>. The differential conditional entropy <math>h(X|Y)</math> is defined as
| |
− |
| |
− | 上面的定义适用于离散随机变量。离散条件熵的连续形式称为条件微分(或连续)熵。设 x 是连续随机变量,f (x,y)是连续随机概率密度函数。微分条件熵 < math > h (x | y) </math > 被定义为
| |
− |
| |
| &= -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log (p(x,y)) + \sum_{x\in\mathcal X, y\in\mathcal Y}{p(x,y)\log(p(x))} \\[4pt] | | &= -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log (p(x,y)) + \sum_{x\in\mathcal X, y\in\mathcal Y}{p(x,y)\log(p(x))} \\[4pt] |
− |
| |
| & = \Eta(X,Y) + \sum_{x \in \mathcal X} p(x)\log (p(x) ) \\[4pt] | | & = \Eta(X,Y) + \sum_{x \in \mathcal X} p(x)\log (p(x) ) \\[4pt] |
− |
| |
− | {{Equation box 1
| |
− |
| |
− | {方程式方框1
| |
− |
| |
| & = \Eta(X,Y) - \Eta(X). | | & = \Eta(X,Y) - \Eta(X). |
− |
| |
− | |indent =
| |
− |
| |
− | 2012年10月22日
| |
− |
| |
| \end{align}</math> | | \end{align}</math> |
− |
| |
− | |title=
| |
− |
| |
− | 2012年10月11日
| |
− |
| |
− |
| |
− |
| |
− | |equation = }}
| |
− |
| |
− | | equation = }
| |
| | | |
| In general, a chain rule for multiple random variables holds: | | In general, a chain rule for multiple random variables holds: |
− |
| |
− | |cellpadding= 6
| |
− |
| |
− | 6
| |
− |
| |
− |
| |
− |
| |
− | |border
| |
− |
| |
− | 边界
| |
| | | |
| :<math> \Eta(X_1,X_2,\ldots,X_n) = | | :<math> \Eta(X_1,X_2,\ldots,X_n) = |
− |
| |
− | |border colour = #0073CF
| |
− |
| |
− | 0073CF
| |
− |
| |
| \sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) </math><ref name=cover1991 />{{rp|22}} | | \sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) </math><ref name=cover1991 />{{rp|22}} |
− |
| |
− | |background colour=#F5FFFA}}
| |
− |
| |
− | 5/fffa }}
| |
− |
| |
− |
| |
| | | |
| It has a similar form to [[Chain rule (probability)|chain rule]] in probability theory, except that addition instead of multiplication is used. | | It has a similar form to [[Chain rule (probability)|chain rule]] in probability theory, except that addition instead of multiplication is used. |
− |
| |
− |
| |
− |
| |
− | In contrast to the conditional entropy for discrete random variables, the conditional differential entropy may be negative.
| |
− |
| |
− | 与离散随机变量的条件熵相反,条件微分熵可能是负的。
| |
| | | |
| ===Bayes' rule=== | | ===Bayes' rule=== |
− |
| |
| [[Bayes' rule]] for conditional entropy states | | [[Bayes' rule]] for conditional entropy states |
− |
| |
− | As in the discrete case there is a chain rule for differential entropy:
| |
− |
| |
− | 在离散情况下,微分熵有一个链式规则:
| |
− |
| |
| :<math>\Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y).</math> | | :<math>\Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y).</math> |
− |
| |
− | <math>h(Y|X)\,=\,h(X,Y)-h(X)</math>
| |
− |
| |
− | H (y | x) ,= ,h (x,y)-h (x)
| |
− |
| |
− |
| |
− |
| |
− | Notice however that this rule may not be true if the involved differential entropies do not exist or are infinite.
| |
− |
| |
− | 然而,请注意,如果所涉及的微分熵不存在或者是无限的,那么这个规则可能不成立。
| |
| | | |
| ''Proof.'' <math>\Eta(Y|X) = \Eta(X,Y) - \Eta(X)</math> and <math>\Eta(X|Y) = \Eta(Y,X) - \Eta(Y)</math>. Symmetry entails <math>\Eta(X,Y) = \Eta(Y,X)</math>. Subtracting the two equations implies Bayes' rule. | | ''Proof.'' <math>\Eta(Y|X) = \Eta(X,Y) - \Eta(X)</math> and <math>\Eta(X|Y) = \Eta(Y,X) - \Eta(Y)</math>. Symmetry entails <math>\Eta(X,Y) = \Eta(Y,X)</math>. Subtracting the two equations implies Bayes' rule. |
− |
| |
− |
| |
− |
| |
− | Joint differential entropy is also used in the definition of the mutual information between continuous random variables:
| |
− |
| |
− | 联合微分熵也用于连续随机变量之间互信息的定义:
| |
| | | |
| If <math>Y</math> is [[Conditional independence|conditionally independent]] of <math>Z</math> given <math>X</math> we have: | | If <math>Y</math> is [[Conditional independence|conditionally independent]] of <math>Z</math> given <math>X</math> we have: |
− |
| |
− | <math>\operatorname{I}(X,Y)=h(X)-h(X|Y)=h(Y)-h(Y|X)</math>
| |
− |
| |
− | (x,y) = h (x)-h (x | y) = h (y)-h (y | x) </math >
| |
− |
| |
− |
| |
| | | |
| :<math>\Eta(Y|X,Z) \,=\, \Eta(Y|X).</math> | | :<math>\Eta(Y|X,Z) \,=\, \Eta(Y|X).</math> |
− |
| |
− | <math>h(X|Y) \le h(X)</math> with equality if and only if <math>X</math> and <math>Y</math> are independent.
| |
− |
| |
− | 当且仅当 < math > x </math > 和 < math > y </math > 是独立的。
| |
− |
| |
− |
| |
| | | |
| ===Other properties=== | | ===Other properties=== |
− |
| |
| For any <math>X</math> and <math>Y</math>: | | For any <math>X</math> and <math>Y</math>: |
− |
| |
− | The conditional differential entropy yields a lower bound on the expected squared error of an estimator. For any random variable <math>X</math>, observation <math>Y</math> and estimator <math>\widehat{X}</math> the following holds:
| |
− |
| |
− | 条件微分熵对估计量的期望平方误差产生一个下限。对于任何一个随机变量,观察值 < math > y </math > 和估计值 < math > widedhat { x } </math > ,下面是:
| |
− |
| |
| :<math display="block">\begin{align} | | :<math display="block">\begin{align} |
− |
| |
− | <math display="block">\mathbb{E}\left[\bigl(X - \widehat{X}{(Y)}\bigr)^2\right]
| |
− |
| |
− | < math display = " block" > mathbb { e } left [ bigl (x-widehat { x }{(y)} bigr) ^ 2 right ]
| |
− |
| |
| \Eta(Y|X) &\le \Eta(Y) \, \\ | | \Eta(Y|X) &\le \Eta(Y) \, \\ |
− |
| |
− | \ge \frac{1}{2\pi e}e^{2h(X|Y)}</math>
| |
− |
| |
− | 1}{2 pi e } e ^ {2 h (x | y)} </math >
| |
− |
| |
| \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\ | | \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\ |
− |
| |
| \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\ | | \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\ |
− |
| |
− | This is related to the uncertainty principle from quantum mechanics.
| |
− |
| |
− | 这与量子力学的不确定性原理有关。
| |
− |
| |
| \operatorname{I}(X;Y) &\le \Eta(X),\, | | \operatorname{I}(X;Y) &\le \Eta(X),\, |
− |
| |
| \end{align}</math> | | \end{align}</math> |
− |
| |
− |
| |
− |
| |
− | In quantum information theory, the conditional entropy is generalized to the conditional quantum entropy. The latter can take negative values, unlike its classical counterpart.
| |
− |
| |
− | 在量子信息论中,条件熵被推广为条件量子熵。后者可以采取负值,不像它的古典对应物。
| |
| | | |
| where <math>\operatorname{I}(X;Y)</math> is the [[mutual information]] between <math>X</math> and <math>Y</math>. | | where <math>\operatorname{I}(X;Y)</math> is the [[mutual information]] between <math>X</math> and <math>Y</math>. |
− |
| |
− |
| |
| | | |
| For independent <math>X</math> and <math>Y</math>: | | For independent <math>X</math> and <math>Y</math>: |
− |
| |
− |
| |
| | | |
| :<math>\Eta(Y|X) = \Eta(Y) </math> and <math>\Eta(X|Y) = \Eta(X) \, </math> | | :<math>\Eta(Y|X) = \Eta(Y) </math> and <math>\Eta(X|Y) = \Eta(X) \, </math> |
− |
| |
− |
| |
| | | |
| Although the specific-conditional entropy <math>\Eta(X|Y=y)</math> can be either less or greater than <math>\Eta(X)</math> for a given [[random variate]] <math>y</math> of <math>Y</math>, <math>\Eta(X|Y)</math> can never exceed <math>\Eta(X)</math>. | | Although the specific-conditional entropy <math>\Eta(X|Y=y)</math> can be either less or greater than <math>\Eta(X)</math> for a given [[random variate]] <math>y</math> of <math>Y</math>, <math>\Eta(X|Y)</math> can never exceed <math>\Eta(X)</math>. |
− |
| |
− |
| |
| | | |
| == Conditional differential entropy == | | == Conditional differential entropy == |
− |
| |
| === Definition === | | === Definition === |
− |
| |
| The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called ''conditional differential (or continuous) entropy''. Let <math>X</math> and <math>Y</math> be a continuous random variables with a [[joint probability density function]] <math>f(x,y)</math>. The differential conditional entropy <math>h(X|Y)</math> is defined as<ref name=cover1991 />{{rp|249}} | | The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called ''conditional differential (or continuous) entropy''. Let <math>X</math> and <math>Y</math> be a continuous random variables with a [[joint probability density function]] <math>f(x,y)</math>. The differential conditional entropy <math>h(X|Y)</math> is defined as<ref name=cover1991 />{{rp|249}} |
| | | |
| + | {{Equation box 1 |
| + | |indent = |
| + | |title= |
| + | |equation = {{NumBlk||<math>h(X|Y) = -\int_{\mathcal X, \mathcal Y} f(x,y)\log f(x|y)\,dx dy</math>|{{EquationRef|Eq.2}}}} |
| + | |cellpadding= 6 |
| + | |border |
| + | |border colour = #0073CF |
| + | |background colour=#F5FFFA}} |
| | | |
| + | === Properties === |
| + | In contrast to the conditional entropy for discrete random variables, the conditional differential entropy may be negative. |
| | | |
− | {{Equation box 1 | + | As in the discrete case there is a chain rule for differential entropy: |
| + | :<math>h(Y|X)\,=\,h(X,Y)-h(X)</math><ref name=cover1991 />{{rp|253}} |
| + | Notice however that this rule may not be true if the involved differential entropies do not exist or are infinite. |
| | | |
− | Category:Entropy and information
| + | Joint differential entropy is also used in the definition of the [[mutual information]] between continuous random variables: |
| + | :<math>\operatorname{I}(X,Y)=h(X)-h(X|Y)=h(Y)-h(Y|X)</math> |
| | | |
− | 类别: 熵和信息
| + | <math>h(X|Y) \le h(X)</math> with equality if and only if <math>X</math> and <math>Y</math> are independent.<ref name=cover1991 />{{rp|253}} |
| | | |
− | |indent = | + | ===Relation to estimator error=== |
| + | The conditional differential entropy yields a lower bound on the expected squared error of an [[estimator]]. For any random variable <math>X</math>, observation <math>Y</math> and estimator <math>\widehat{X}</math> the following holds:<ref name=cover1991 />{{rp|255}} |
| + | :<math display="block">\mathbb{E}\left[\bigl(X - \widehat{X}{(Y)}\bigr)^2\right] |
| + | \ge \frac{1}{2\pi e}e^{2h(X|Y)}</math> |
| | | |
− | Category:Information theory
| + | This is related to the [[uncertainty principle]] from [[quantum mechanics]]. |
| | | |
− | 范畴: 信息论
| + | ==Generalization to quantum theory== |
| + | In [[quantum information theory]], the conditional entropy is generalized to the [[conditional quantum entropy]]. The latter can take negative values, unlike its classical counterpart. |
| | | |
− | <noinclude>
| + | == See also == |
| + | * [[Entropy (information theory)]] |
| + | * [[Mutual information]] |
| + | * [[Conditional quantum entropy]] |
| + | * [[Variation of information]] |
| + | * [[Entropy power inequality]] |
| + | * [[Likelihood function]] |
| | | |
− | <small>This page was moved from [[wikipedia:en:Conditional entropy]]. Its edit history can be viewed at [[条件熵/edithistory]]</small></noinclude>
| + | ==References== |
| + | {{Reflist}} |
| | | |
− | [[Category:待整理页面]] | + | [[Category:Entropy and information]] |
| + | [[Category:Information theory]] |