更改

删除24字节 、 2020年10月28日 (三) 16:56
第92行: 第92行:  
== Properties 属性 ==
 
== Properties 属性 ==
 
=== Conditional entropy equals zero 条件熵等于零 ===
 
=== Conditional entropy equals zero 条件熵等于零 ===
<math>\Eta(Y|X)=0</math> if and only if the value of <math>Y</math> is completely determined by the value of <math>X</math>.
+
<math>H(Y|X)=0</math> if and only if the value of <math>Y</math> is completely determined by the value of <math>X</math>.
    
当且仅当<math>Y</math>的值完全由<math>X</math>的值确定时,才为<math>H(Y|X)=0</math>。
 
当且仅当<math>Y</math>的值完全由<math>X</math>的值确定时,才为<math>H(Y|X)=0</math>。
第99行: 第99行:     
=== Conditional entropy of independent random variables 独立随机变量的条件熵 ===
 
=== Conditional entropy of independent random variables 独立随机变量的条件熵 ===
Conversely, <math>\Eta(Y|X) = \Eta(Y)</math> if and only if <math>Y</math> and <math>X</math> are [[independent random variables]].
+
Conversely, <math>H(Y|X) = \Eta(Y)</math> if and only if <math>Y</math> and <math>X</math> are [[independent random variables]].
    
相反,当且仅当<math>Y</math>和<math>X</math>是独立随机变量时,则为<math>H(Y|X) =H(Y)</math>。
 
相反,当且仅当<math>Y</math>和<math>X</math>是独立随机变量时,则为<math>H(Y|X) =H(Y)</math>。
第141行: 第141行:  
除了使用加法而不是乘法之外,它具有与概率论中的链式法则类似的形式。
 
除了使用加法而不是乘法之外,它具有与概率论中的链式法则类似的形式。
   −
===Bayes' rule===
+
=== Bayes' rule 贝叶斯法则 ===
 
[[Bayes' rule]] for conditional entropy states
 
[[Bayes' rule]] for conditional entropy states
 
:<math>\Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y).</math>
 
:<math>\Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y).</math>
第151行: 第151行:  
:<math>\Eta(Y|X,Z) \,=\, \Eta(Y|X).</math>
 
:<math>\Eta(Y|X,Z) \,=\, \Eta(Y|X).</math>
   −
===Other properties===
+
=== Other properties 其他性质 ===
 
For any <math>X</math> and <math>Y</math>:
 
For any <math>X</math> and <math>Y</math>:
 
:<math display="block">\begin{align}
 
:<math display="block">\begin{align}
   \Eta(Y|X) &\le \Eta(Y) \, \\
+
   H(Y|X) &\le H(Y) \, \\
   \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\
+
   H(X,Y) &= H(X|Y) + H(Y|X) + \operatorname{I}(X;Y),\qquad \\
   \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\
+
   H(X,Y) &= H(X) + H(Y) - \operatorname{I}(X;Y),\, \\
   \operatorname{I}(X;Y) &\le \Eta(X),\,
+
   \operatorname{I}(X;Y) &\le H(X),\,
 
\end{align}</math>
 
\end{align}</math>
   第164行: 第164行:  
For independent <math>X</math> and <math>Y</math>:
 
For independent <math>X</math> and <math>Y</math>:
   −
:<math>\Eta(Y|X) = \Eta(Y) </math> and <math>\Eta(X|Y) = \Eta(X) \, </math>
+
:<math>H(Y|X) = H(Y) </math> and <math>H(X|Y) = H(X) \, </math>
   −
Although the specific-conditional entropy <math>\Eta(X|Y=y)</math> can be either less or greater than <math>\Eta(X)</math> for a given [[random variate]] <math>y</math> of <math>Y</math>, <math>\Eta(X|Y)</math> can never exceed <math>\Eta(X)</math>.
+
Although the specific-conditional entropy <math>H(X|Y=y)</math> can be either less or greater than <math>H(X)</math> for a given [[random variate]] <math>y</math> of <math>Y</math>, <math>H(X|Y)</math> can never exceed <math>H(X)</math>.
    
== Conditional differential entropy ==
 
== Conditional differential entropy ==
961

个编辑