更改

删除1,647字节 、 2020年10月31日 (六) 19:10
第32行: 第32行:  
Emergence of hubs can be explained by the difference between scale-free networks and random networks. Scale-free networks (Barabási–Albert model) are different from random networks (Erdős–Rényi model) in two aspects: (a) growth, (b) preferential attachment.<ref name=RMP>{{Cite journal
 
Emergence of hubs can be explained by the difference between scale-free networks and random networks. Scale-free networks (Barabási–Albert model) are different from random networks (Erdős–Rényi model) in two aspects: (a) growth, (b) preferential attachment.<ref name=RMP>{{Cite journal
   −
枢纽的成因可以用无标度网络和随机网络的区别来解释。'''<font color="#ff8000">无标度网络 Scale-Free Networks</font>'''(Barabási-Albert模型)与'''<font color="#ff8000">随机网络 Random Networks</font>'''(Erdős–Rényi model)的区别主要存在于如下两个方面: (a)'''<font color="#ff8000">增长 Growth</font>''',(b)'''<font color="#ff8000">优先链接 Preferential Attachment</font>'''。{ Cite journal
+
枢纽的成因可以用无标度网络和随机网络的区别来解释。'''<font color="#ff8000">无标度网络 Scale-Free Networks</font>'''(Barabási-Albert模型)与'''<font color="#ff8000">随机网络 Random Networks</font>'''(Erdős–Rényi model)的区别主要存在于如下两个方面: (a)'''<font color="#ff8000">增长 Growth</font>''',(b)'''<font color="#ff8000">优先链接 Preferential Attachment</font>'''。
 
  −
| url = http://www.nd.edu/~networks/Publication%20Categories/03%20Journal%20Articles/Physics/StatisticalMechanics_Rev%20of%20Modern%20Physics%2074,%2047%20(2002).pdf
  −
 
  −
| url = http://www.nd.edu/~networks/Publication%20Categories/03%20Journal%20Articles/Physics/StatisticalMechanics_Rev%20of%20Modern%20Physics%2074,%2047%20(2002).pdf
  −
 
  −
Http://www.nd.edu/~networks/publication%20categories/03%20journal%20articles/physics/statisticalmechanics_rev%20of%20modern%20physics%2074,%2047%20(2002).pdf
  −
 
  −
| authorlink1 = Réka Albert | first1 = Réka | last1 = Albert
  −
 
  −
| authorlink1 = Réka Albert | first1 = Réka | last1 = Albert
  −
 
  −
1 = r é ka Albert | first1 = r é ka | last1 = Albert
  −
 
  −
| authorlink2 = Albert-László Barabási | first2 = Albert-László | last2 = Barabási
  −
 
  −
| authorlink2 = Albert-László Barabási | first2 = Albert-László | last2 = Barabási
  −
 
  −
2 = albert-lászló Barabási | first2 = albert-lászló | last2 = Barabási
  −
 
  −
| title = Statistical mechanics of complex networks
  −
 
  −
| title = Statistical mechanics of complex networks
  −
 
  −
| title = 复杂网络的统计力学
  −
 
  −
| journal = [[Reviews of Modern Physics]]
  −
 
  −
| journal = Reviews of Modern Physics
  −
 
  −
| 杂志 = 现代物理学评论
  −
 
  −
| volume = 74
  −
 
  −
| volume = 74
  −
 
  −
74
  −
 
  −
| pages = 47–97
  −
 
  −
| pages = 47–97
  −
 
  −
| 页数 = 47-97
  −
 
  −
| year = 2002
  −
 
  −
| year = 2002
  −
 
  −
2002年
  −
 
  −
| doi = 10.1103/RevModPhys.74.47
  −
 
  −
| doi = 10.1103/RevModPhys.74.47
  −
 
  −
10.1103/RevModPhys. 74.47
  −
 
  −
| bibcode=2002RvMP...74...47A
  −
 
  −
| bibcode=2002RvMP...74...47A
  −
 
  −
2002RvMP... 74... 47A
  −
 
  −
|arxiv = cond-mat/0106096 }}</ref>
  −
 
  −
|arxiv = cond-mat/0106096 }}</ref>
  −
 
  −
|arxiv = cond-mat/0106096 }}</ref>
      
* (a) Scale-free networks assume a continuous growth of the number of nodes ''N'', compared to random networks which assume a fixed number of nodes. In scale-free networks the degree of the largest hub rises polynomially with the size of the network. Therefore, the degree of a hub can be high in a scale-free network. In random networks the degree of the largest node rises logaritmically (or slower) with N, thus the hub number will be small even in a very large network.
 
* (a) Scale-free networks assume a continuous growth of the number of nodes ''N'', compared to random networks which assume a fixed number of nodes. In scale-free networks the degree of the largest hub rises polynomially with the size of the network. Therefore, the degree of a hub can be high in a scale-free network. In random networks the degree of the largest node rises logaritmically (or slower) with N, thus the hub number will be small even in a very large network.
80

个编辑