更改

无编辑摘要
第9行: 第9行:       −
演化算法通常会对各种优化问题得出很好的近似解,因为演化算法不会做出任何假设,对每一个问题都一视同仁。演化算法通常应用于求解最优化问题,在生物建模方面一般来说只会用在研究微观演化过程以及基于细胞过程的规划模型。在大多数演化算法的应用中,计算复杂度都是最大的障碍<ref name="VLSI">{{cite book|last=Cohoon|first=J|display-authors=etal|title=Evolutionary algorithms for the physical design of VLSI circuits|url= https://www.ifte.de/mitarbeiter/lienig/cohoon.pdf|journal=Advances in Evolutionary Computing: Theory and Applications|publisher= Springer, pp. 683-712, 2003|isbn=978-3-540-43330-9|date=2002-11-26}}</ref>。事实上,这种计算复杂度来源于[[适应度函数]]。简化适应度函数、计算近似的适应度,是克服这一障碍的方法之一。由于简单的演化算法也往往可以解决复杂的优化问题,因此,算法的复杂度应该与问题的复杂度没有直接关系。
+
演化算法通常会对各种优化问题得出很好的近似解,因为演化算法不会做出任何假设,对每一个问题都一视同仁。演化算法通常应用于求解最优化问题,在生物建模方面一般来说只会用在基于细胞过程的微观演化过程和规划模型研究中。在大多数演化算法的应用中,计算复杂度都是最大的障碍<ref name="VLSI">{{cite book|last=Cohoon|first=J|display-authors=etal|title=Evolutionary algorithms for the physical design of VLSI circuits|url= https://www.ifte.de/mitarbeiter/lienig/cohoon.pdf|journal=Advances in Evolutionary Computing: Theory and Applications|publisher= Springer, pp. 683-712, 2003|isbn=978-3-540-43330-9|date=2002-11-26}}</ref>。事实上,这种计算复杂度来源于[[适应度函数]]。'''<font color="#ff8000">适应度近似法 fitness approximation</font>'''是克服这一障碍的方法之一。但看似简单的演化算法经常能够解决复杂的问题,因此,算法的复杂度应该与问题的复杂度没有直接关系。
      第34行: 第34行:  
* 神经演化 Neuroevolution:类似于遗传编程,但是基因组表示的是人工神经网络的结构和连接权重,这种基因组编码可以是直接编码也可以是间接编码。
 
* 神经演化 Neuroevolution:类似于遗传编程,但是基因组表示的是人工神经网络的结构和连接权重,这种基因组编码可以是直接编码也可以是间接编码。
 
* 学习分类器系统 Learning classifier system :这种技术的解是一组分类器(一组规则画着条件)。密歇根-学习分类器系统在个体层面进行演化而匹兹堡-学习分类器系统使用分类器集合群体来演化。最开始的时候这些分类器都是0-1编码的,如今包含实数、神经网络、或者S-expression。其适应度一般是分类器系统应用于强化学习或有监督学习时的准确率。
 
* 学习分类器系统 Learning classifier system :这种技术的解是一组分类器(一组规则画着条件)。密歇根-学习分类器系统在个体层面进行演化而匹兹堡-学习分类器系统使用分类器集合群体来演化。最开始的时候这些分类器都是0-1编码的,如今包含实数、神经网络、或者S-expression。其适应度一般是分类器系统应用于强化学习或有监督学习时的准确率。
 +
    
==与生物过程的比较==
 
==与生物过程的比较==
    
对于演化算法来说,一个可能的局限可能是缺少对基因型和表现型的明确区分。在大自然中,一个受精卵会历经一个成为胚胎发育的过程,然后成为一个成熟的表现型。自然选择以表现型而非基因型为选择标准。这种间接编码被认为可以使得演化过程更健壮(降低致命突变的概率),并提高器官的进化能力<ref>G.S. Hornby and J.B. Pollack. "Creating high-level components with a generative representation for body-brain evolution". ''[[Artificial Life (journal)|Artificial Life]]'', 8(3):223–246, 2002.</ref><ref>Jeff Clune, Benjamin Beckmann, Charles Ofria, and Robert Pennock. [http://www.ofria.com/pubs/2009CluneEtAl.pdf "Evolving Coordinated Quadruped Gaits with the HyperNEAT Generative Encoding"] . ''Proceedings of the IEEE Congress on Evolutionary Computing Special Section on Evolutionary Robotics'', 2009. Trondheim, Norway.</ref> 。这种间接编码还使得演化能够充分利用环境的规律<ref>J. Clune, C. Ofria, and R. T. Pennock, [http://jeffclune.com/publications/Clune-HyperNEATandRegularity.pdf "How a generative encoding fares as problem-regularity decreases"], in ''PPSN'' (G. Rudolph, T. Jansen, S. M. Lucas, C. Poloni, and N. Beume, eds.), vol. 5199 of ''Lecture Notes in Computer Science'', pp. 358–367, Springer, 2008.</ref>。最近有关[[人工胚胎学]] artificial embryogeny 和[[人工发展系统]] artificial developmental system 的工作也在寻求解决这一局限的方法。基因表达规划这一技术在基因型-表现型系统的探索中取得成功,其中基因型包括固定长度地线性多基因染色体,而表现型则包括了规模可变的多重表达式树或者计算机程序<ref>Ferreira, C., 2001. [http://www.gene-expression-programming.com/webpapers/GEP.pdf "Gene Expression Programming: A New Adaptive Algorithm for Solving Problems"]. ''Complex Systems'', Vol. 13, issue 2: 87–129.</ref>。
 
对于演化算法来说,一个可能的局限可能是缺少对基因型和表现型的明确区分。在大自然中,一个受精卵会历经一个成为胚胎发育的过程,然后成为一个成熟的表现型。自然选择以表现型而非基因型为选择标准。这种间接编码被认为可以使得演化过程更健壮(降低致命突变的概率),并提高器官的进化能力<ref>G.S. Hornby and J.B. Pollack. "Creating high-level components with a generative representation for body-brain evolution". ''[[Artificial Life (journal)|Artificial Life]]'', 8(3):223–246, 2002.</ref><ref>Jeff Clune, Benjamin Beckmann, Charles Ofria, and Robert Pennock. [http://www.ofria.com/pubs/2009CluneEtAl.pdf "Evolving Coordinated Quadruped Gaits with the HyperNEAT Generative Encoding"] . ''Proceedings of the IEEE Congress on Evolutionary Computing Special Section on Evolutionary Robotics'', 2009. Trondheim, Norway.</ref> 。这种间接编码还使得演化能够充分利用环境的规律<ref>J. Clune, C. Ofria, and R. T. Pennock, [http://jeffclune.com/publications/Clune-HyperNEATandRegularity.pdf "How a generative encoding fares as problem-regularity decreases"], in ''PPSN'' (G. Rudolph, T. Jansen, S. M. Lucas, C. Poloni, and N. Beume, eds.), vol. 5199 of ''Lecture Notes in Computer Science'', pp. 358–367, Springer, 2008.</ref>。最近有关[[人工胚胎学]] artificial embryogeny 和[[人工发展系统]] artificial developmental system 的工作也在寻求解决这一局限的方法。基因表达规划这一技术在基因型-表现型系统的探索中取得成功,其中基因型包括固定长度地线性多基因染色体,而表现型则包括了规模可变的多重表达式树或者计算机程序<ref>Ferreira, C., 2001. [http://www.gene-expression-programming.com/webpapers/GEP.pdf "Gene Expression Programming: A New Adaptive Algorithm for Solving Problems"]. ''Complex Systems'', Vol. 13, issue 2: 87–129.</ref>。
 +
    
==相关技术==
 
==相关技术==
第50行: 第52行:     
* [[粒子群算法]]:是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法,最适合用于解决数值优化问题。
 
* [[粒子群算法]]:是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法,最适合用于解决数值优化问题。
 +
    
==其他基于群体的元启发式方法==
 
==其他基于群体的元启发式方法==
7,129

个编辑