更改

删除14,906字节 、 2020年11月1日 (日) 21:34
无编辑摘要
第1行: 第1行: −
本词条由Agnes初步翻译
+
本词条由Agnes初步翻译,由Zcy初步审校
    
此词条暂由彩云小译翻译,未经人工整理和审校,带来阅读不便,请见谅。
 
此词条暂由彩云小译翻译,未经人工整理和审校,带来阅读不便,请见谅。
第74行: 第74行:     
[[File:SIR model simulated using python.gif|thumb|图1:Spatial SIR model simulation. Each cell can infect its eight immediate neighbors.空间 SIR 模型仿真。每个单元都能感染它的八个相邻单元。]]
 
[[File:SIR model simulated using python.gif|thumb|图1:Spatial SIR model simulation. Each cell can infect its eight immediate neighbors.空间 SIR 模型仿真。每个单元都能感染它的八个相邻单元。]]
 +
      第82行: 第83行:  
These variables (S, I, and R) represent the number of people in each compartment at a particular time. To represent that the number of susceptible, infectious and removed individuals may vary over time (even if the total population size remains constant), we make the precise numbers a function of t (time): S(t), I(t) and R(t). For a specific disease in a specific population, these functions may be worked out in order to predict possible outbreaks and bring them under control.
 
These variables (S, I, and R) represent the number of people in each compartment at a particular time. To represent that the number of susceptible, infectious and removed individuals may vary over time (even if the total population size remains constant), we make the precise numbers a function of t (time): S(t), I(t) and R(t). For a specific disease in a specific population, these functions may be worked out in order to predict possible outbreaks and bring them under control.
   −
这些变量(S、I和R)表示特定时间每个类别内的人数。为了表示易感者、感病者和康复者数量可能随时间变化(总种群规模保持不变) ,我们将精确数字设为时间''t''的函数: S(t)、 I(t)和 R(t)。对于特定人群中的特定疾病,这些函数可以用于预测潜在的传染病暴发并控制它们。
+
这些变量(S、I和R)表示特定时间每个类别人群的数量。为了表示易感者、染病者和康复者数量会随时间变化(总的人群规模保持不变) ,我们将这些类别人群的精确数量设为时间t的函数: S(t)、 I(t)和 R(t)。对于特定人群中的特定疾病,这些函数可以用于预测潜在的传染病暴发和控制传染病的大规模爆发。
      第90行: 第91行:  
As implied by the variable function of t, the model is dynamic in that the numbers in each compartment may fluctuate over time. The importance of this dynamic aspect is most obvious in an endemic disease with a short infectious period, such as measles in the UK prior to the introduction of a vaccine in 1968. Such diseases tend to occur in cycles of outbreaks due to the variation in number of susceptibles (S(t)) over time. During an epidemic, the number of susceptible individuals falls rapidly as more of them are infected and thus enter the infectious and removed compartments. The disease cannot break out again until the number of susceptibles has built back up, e.g. as a result of offspring being born into the susceptible compartment.
 
As implied by the variable function of t, the model is dynamic in that the numbers in each compartment may fluctuate over time. The importance of this dynamic aspect is most obvious in an endemic disease with a short infectious period, such as measles in the UK prior to the introduction of a vaccine in 1968. Such diseases tend to occur in cycles of outbreaks due to the variation in number of susceptibles (S(t)) over time. During an epidemic, the number of susceptible individuals falls rapidly as more of them are infected and thus enter the infectious and removed compartments. The disease cannot break out again until the number of susceptibles has built back up, e.g. as a result of offspring being born into the susceptible compartment.
   −
从''t''的变量函数中可以看出,该模型是动态的,因为每个分类中的数量可能随时间而波动。这一动态方面的重要性尤其体现在传染时间较短的地方性疾病中,如1968年引进疫苗之前英国的麻疹。由于易感者(S (t))随着时间发生变化,这类疾病往往会周期性爆发。在流行病爆发期间,易感者人数迅速下降,因为更多的人受到感染,从而进入感病者和康复者的类别。这种疾病只有易感者数量增加时才能再次爆发,例如:当后代出生在易感者区域中时。
+
从变量t可以看出,该模型是动态的,每种类别人群的数量可以随时间波动。这种动态的重要性在传染期较短的地方性疾病中表现得最为明显,如在1968年引进疫苗之前英国的麻疹。由于易感者数量<math> (S (t)) </math>随着时间发生变化,这类疾病往往会周期性爆发。在流行病爆发期间,由于更多的人受到感染,转变为染病者和康复者的类别,易感者数量迅速下降。这种疾病只有易感者数量增加时才能再次爆发,例如:由于后代的出生,增加易感者人群数量。
 
        −
[[File:Graph SIR model without vital dynamics.svg|thumb|Yellow=Susceptible, Maroon=Infectious, Teal=Recovered]]
     −
Yellow=Susceptible, Maroon=Infectious, Teal=Recovered
+
[[File:Graph SIR model without vital dynamics.png|thumb|图2:Yellow=Susceptible, Maroon=Infectious, Teal=Recovered黄色=易感者,栗色=感病者,青色 =康复者]]
   −
【图2:Yellow=Susceptible, Maroon=Infectious, Teal=Recovered黄色=易感者,栗色=感病者,青色 =康复者】
        第106行: 第104行:  
Each member of the population typically progresses from susceptible to infectious to removed. This can be shown as a flow diagram in which the boxes represent the different compartments and the arrows the transition between compartments, i.e.
 
Each member of the population typically progresses from susceptible to infectious to removed. This can be shown as a flow diagram in which the boxes represent the different compartments and the arrows the transition between compartments, i.e.
   −
人群中的每个成员通常由易感者变到感染者,再回归康复者。这可以显示为一个流程图,在这个流程图中,方框代表不同的类别,箭头代表类别之间的过渡,即:
+
人群中的每个成员通常由易感者转变为感染者,然后转化为康复者。这可以显示为一个流程图,在这个流程图中,方框代表不同的类别,箭头代表类别之间的过渡,即:
   −
[[File:SIR Flow Diagram.svg|600px|center|SIR compartment model]]
+
[[File: SIR Flow Diagram.png|thumb| 图3:States in an SIR epidemic model and the rates at which individuals transition between them SIR流行病模型中的状态,以及个人在不同类别之间转换的比率]]
   −
SIR compartment model
     −
【图3:SIR compartment modelSIR传染病模型】
        第124行: 第120行:  
For the full specification of the model, the arrows should be labeled with the transition rates between compartments. Between S and I, the transition rate is assumed to be d(S/N)/dt = -βSI/N<sup>2</sup>, where N is the total population, β is the average number of contacts per person per time, multiplied by the probability of disease transmission in a contact between a susceptible and an infectious subject, and SI/N<sup>2</sup> is the fraction of those contacts between an infectious and susceptible individual which result in the susceptible person becoming infected. (This is mathematically similar to the law of mass action in chemistry in which random collisions between molecules result in a chemical reaction and the fractional rate is proportional to the concentration of the two reactants).
 
For the full specification of the model, the arrows should be labeled with the transition rates between compartments. Between S and I, the transition rate is assumed to be d(S/N)/dt = -βSI/N<sup>2</sup>, where N is the total population, β is the average number of contacts per person per time, multiplied by the probability of disease transmission in a contact between a susceptible and an infectious subject, and SI/N<sup>2</sup> is the fraction of those contacts between an infectious and susceptible individual which result in the susceptible person becoming infected. (This is mathematically similar to the law of mass action in chemistry in which random collisions between molecules result in a chemical reaction and the fractional rate is proportional to the concentration of the two reactants).
   −
为了完整说明这个模型,箭头应该标明类别之间的传染率。在S和I之间,传染率假定为d (S/N)/dt =-SI/N < sup > 2 </sup > ,其中 ''N'' 是总人口,β是平均每人每次接触的人数,乘以易感者和感病者之间接触传播疾病的概率,SI/N < sup > 2 </sup > 是易感个体和感病个体之间接触之后导致易感个体感染的百分比。(这与化学中的'''<font color="#ff8000">质量作用定律the law of mass action</font>'''在数学计算上类似,即分子之间的随机碰撞导致化学反应,反应速率与两种反应物的浓度成正比)。
+
为了完整说明这个模型,箭头上标明了类别之间的传染率。在S和I之间,传染率假定为<math> d\left( S/N \right) /dt=-\beta SI/N^2 </math>,其中 <math> N </math> 是总人口,<math> β </math>是平均每人每次接触的数量乘以易感者和感病者之间接触传播疾病的概率,<math> SI/N < sup > 2 </sup > </math> 是易感个体和染病个体之间接触的比例,这种接触导致易感个体转化为染病个体。(这在数学上与化学中的'''<font color="#ff8000">质量作用定律the law of mass action</font>'''类似,在这个定律中,分子之间的随机碰撞导致化学反应,反应比例与两种反应物的浓度成正比)。
      第132行: 第128行:  
Between I and R, the transition rate is assumed to be proportional to the number of infectious individuals which is γI. This is equivalent to assuming that the probability of an infectious individual recovering in any time interval dt is simply γdt. If an individual is infectious for an average time period D, then γ = 1/D. This is also equivalent to the assumption that the length of time spent by an individual in the infectious state is a random variable with an exponential distribution. The "classical" SIR model may be modified by using more complex and realistic distributions for the I-R transition rate (e.g the Erlang distribution).
 
Between I and R, the transition rate is assumed to be proportional to the number of infectious individuals which is γI. This is equivalent to assuming that the probability of an infectious individual recovering in any time interval dt is simply γdt. If an individual is infectious for an average time period D, then γ = 1/D. This is also equivalent to the assumption that the length of time spent by an individual in the infectious state is a random variable with an exponential distribution. The "classical" SIR model may be modified by using more complex and realistic distributions for the I-R transition rate (e.g the Erlang distribution).
   −
在 I 和 R 之间,假设传染率与感病者的数目成正比,即γI。这相当于假设一个感病者在任何时间间隔内恢复的概率仅为γdt。如果平均每个人在时间段D内具有传染性,那么γ= 1/D。这也相当于假设一个人在感染状态下的时间长度是一个服从指数分布的随机变量。“经典的” SIR 模型可以通过更加复杂和现实的分布来修正I-R 传染率(例如'''<font color="#ff8000">爱尔郎分布Erlang distribution</font>''')。
+
在 I 和 R 之间,假设转化率与染病者的数目成正比,即<math>γI </math>。这相当于假设一个染病者在任何时间间隔<math>dt </math>内恢复的概率简化为<math>γdt </math>。如果平均每个人在时间段<math>D </math>内具有传染性,那么<math>γ= 1/D </math>。这也相当于假设一个人在感染状态下的持续时间长度是一个服从指数分布的随机变量。“经典的” SIR 模型可以通过更加复杂和贴近现实的分布来修正I-R 传染率(例如'''<font color="#ff8000">爱尔郎分布Erlang distribution</font>''')。
      第140行: 第136行:  
For the special case in which there is no removal from the infectious compartment (γ=0), the SIR model reduces to a very simple SI model, which has a logistic solution, in which every individual eventually becomes infected.
 
For the special case in which there is no removal from the infectious compartment (γ=0), the SIR model reduces to a very simple SI model, which has a logistic solution, in which every individual eventually becomes infected.
   −
对于感病者全都没有康复的特殊情况(γ=0) ,SIR 模型就简化为一个非常简单的 SI 模型,该模型具有一个逻辑解,即其中每个人最终都会被感染。
+
对于没有染病者康复的特殊情况(<math>γ=0 </math>) ,SIR 模型就简化为一个非常简单的 SI 模型,该模型具有一个逻辑解,即其中每个个体最终都会被感染。
      第152行: 第148行:  
The dynamics of an epidemic, for example, the flu, are often much faster than the dynamics of birth and death, therefore, birth and death are often omitted in simple compartmental models.  The SIR system without so-called vital dynamics (birth and death, sometimes called demography) described above can be expressed by the following set of ordinary differential equations:
 
The dynamics of an epidemic, for example, the flu, are often much faster than the dynamics of birth and death, therefore, birth and death are often omitted in simple compartmental models.  The SIR system without so-called vital dynamics (birth and death, sometimes called demography) described above can be expressed by the following set of ordinary differential equations:
   −
流行病动力学,例如流感,往往比出生和死亡的动力学变化更快,因此,出生和死亡往往被简单的'''<font color="#ff8000">传染病模型comparenmental models</font>'''所忽略。没有上述所谓的生命动力学(出生和死亡,有时称为人口统计学)的 SIR 系统可以用下列一组常微分方程表示:
+
流行病导致的动态变化,例如流感,往往比出生和死亡的导致的动态变化更快,因此,出生和死亡往往被简单的'''<font color="#ff8000">房室模型comparenmental models</font>'''所忽略。没有上述所谓的生命动力学(出生和死亡,有时称为人口统计学)的 SIR 系统可以用下列一组常微分方程表示:
          
:<math>
 
:<math>
  −
<math>
  −
  −
<数学>
  −
  −
\begin{align}
  −
   
\begin{align}
 
\begin{align}
  −
开始{ align }
  −
  −
& \frac{dS}{dt} = - \frac{\beta I S}{N}, \\[6pt]
  −
   
& \frac{dS}{dt} = - \frac{\beta I S}{N}, \\[6pt]
 
& \frac{dS}{dt} = - \frac{\beta I S}{N}, \\[6pt]
  −
& frac { dS }{ dt } =-frac { beta i s }{ n } ,[6 pt ]
  −
  −
& \frac{dI}{dt} = \frac{\beta I S}{N}- \gamma I, \\[6pt]
  −
   
& \frac{dI}{dt} = \frac{\beta I S}{N}- \gamma I, \\[6pt]
 
& \frac{dI}{dt} = \frac{\beta I S}{N}- \gamma I, \\[6pt]
  −
& frac { dI }{ dt } = frac { beta i s }{ n }-gamma i,[6 pt ]
  −
  −
& \frac{dR}{dt} = \gamma I,
  −
  −
& \frac{dR}{dt} = \gamma I,
  −
   
& \frac{dR}{dt} = \gamma I,
 
& \frac{dR}{dt} = \gamma I,
   
\end{align}
 
\end{align}
 +
</math>
   −
\end{align}
     −
\结束{ align }
     −
</math>
  −
  −
</math>
  −
  −
</数学>
        第204行: 第169行:  
where <math>S</math> is the stock of susceptible population, <math>I</math> is the stock of infected, <math>R</math> is the stock of removed population (either by death or recovery), and <math>N</math> is the sum of these three.
 
where <math>S</math> is the stock of susceptible population, <math>I</math> is the stock of infected, <math>R</math> is the stock of removed population (either by death or recovery), and <math>N</math> is the sum of these three.
   −
其中,S</math> 是易感人群的存量,<math>I</math> 是感染人群的存量,<math>R</math> 是康复人群的存量(死亡或康复) ,<math>N</math> 是这三者的总和。
+
其中,<math>S</math> 是易感人群的数量,<math>I</math> 是染病人群的数量,<math>R</math> 是康复人群的数量(死亡或康复) ,<math>N</math> 是这三者的总和。
      第212行: 第177行:  
This model was for the first time proposed by William Ogilvy Kermack and Anderson Gray McKendrick as a special case of what we now call Kermack–McKendrick theory, and followed work McKendrick had done with Ronald Ross.
 
This model was for the first time proposed by William Ogilvy Kermack and Anderson Gray McKendrick as a special case of what we now call Kermack–McKendrick theory, and followed work McKendrick had done with Ronald Ross.
   −
这个模型是一个特例,是在继承了麦克德里克对罗纳德·罗斯所做研究的基础上,由威廉·奥格威·科尔马克和安德森·格雷·麦克德里克首次提出,现在称作科尔马克-麦克德里克理论。
+
这个模型是William Ogilvy Kermack和Anderson Gray McKendrick首次提出的,我们这里的模型是Kermark - McKendrick理论的一个特例,它是在McKendrick与Ronald Ross合作的基础上提出的。
      第219行: 第184行:  
This system is non-linear, however it is possible to derive its analytic solution in implicit form. Firstly note that from:
 
This system is non-linear, however it is possible to derive its analytic solution in implicit form. Firstly note that from:
   −
这个系统是非线性的,但是可以用隐式形式得到它的'''<font color="#ff8000">解析解analytic solution</font>'''。首先,请注意:
+
这个系统是非线性的,但是可以推导出隐式的'''<font color="#ff8000">解析解analytic solution</font>'''。首先:
          
:<math> \frac{dS}{dt} + \frac{dI}{dt} + \frac{dR}{dt}  = 0,</math>
 
:<math> \frac{dS}{dt} + \frac{dI}{dt} + \frac{dR}{dt}  = 0,</math>
  −
<math> \frac{dS}{dt} + \frac{dI}{dt} + \frac{dR}{dt}  = 0,</math>
  −
  −
0,</math > frac { dS }
  −
  −
      
it follows that:
 
it follows that:
第241行: 第200行:  
:<math> S(t) + I(t) + R(t) = \text{constant} = N,</math>
 
:<math> S(t) + I(t) + R(t) = \text{constant} = N,</math>
   −
<math> S(t) + I(t) + R(t) = \text{constant} = N,</math>
  −
  −
S (t) + i (t) + r (t) = text { constant } = n,</math >
        第251行: 第207行:  
expressing in mathematical terms the constancy of population <math> N </math>. Note that the above relationship implies that one need only study the equation for two of the three variables.
 
expressing in mathematical terms the constancy of population <math> N </math>. Note that the above relationship implies that one need only study the equation for two of the three variables.
   −
用数学术语来表达人口 <math> N </math>的稳定性。注意,上述关系意味着人们只需要研究三个变量中的两个的方程。
+
用数学形式来体现人口 <math> N </math>的稳定性。注意,上述关系意味着只需要在方程中研究三个变量中的两个。
      第259行: 第215行:  
Secondly, we note that the dynamics of the infectious class depends on the following ratio:
 
Secondly, we note that the dynamics of the infectious class depends on the following ratio:
   −
其次,我们注意到传染种类的动态取决于以下比例:
+
其次,我们注意到不同种类人群的动态取决于以下比例:
          
:<math> R_0 = \frac{\beta}{\gamma},</math>
 
:<math> R_0 = \frac{\beta}{\gamma},</math>
  −
<math> R_0 = \frac{\beta}{\gamma},</math>
  −
  −
< math > r _ 0 = frac { beta }{ gamma } ,</math >
        第275行: 第227行:  
the so-called basic reproduction number (also called basic reproduction ratio). This ratio is derived as the expected number of new infections (these new infections are sometimes called secondary infections) from a single infection in a population where all subjects are susceptible. This idea can probably be more readily seen if we say that the typical time between contacts is <math>T_{c} = \beta^{-1}</math>, and the typical time until removal is <math>T_{r} = \gamma^{-1}</math>. From here it follows that, on average, the number of contacts by an infectious individual with others before the infectious has been removed is: <math>T_{r}/T_{c}.</math>
 
the so-called basic reproduction number (also called basic reproduction ratio). This ratio is derived as the expected number of new infections (these new infections are sometimes called secondary infections) from a single infection in a population where all subjects are susceptible. This idea can probably be more readily seen if we say that the typical time between contacts is <math>T_{c} = \beta^{-1}</math>, and the typical time until removal is <math>T_{r} = \gamma^{-1}</math>. From here it follows that, on average, the number of contacts by an infectious individual with others before the infectious has been removed is: <math>T_{r}/T_{c}.</math>
   −
所谓的'''<font color="#ff8000">基本再生数basic reprodution numer</font>'''(亦称基本再生率)。这个比率是根据一群易感者中单次感染后的预期的新感染人数(这些新感染有时称为二次感染)计算出来的。如果我们说两次感染之间的典型时间是 <math>T_{c}=\beta^{-1}</math>,而康复之前的典型时间是 <math>T_{r}=|\gamma^{-1}</math> ,那么这个想法可能更容易被看出来。由此可以得出,平均而言,在感染者康复之前,感染者与其他人的接触次数为: <math>T_{r}/T_{c}</数学>
+
所谓的'''<font color="#ff8000">基本再生数basic reprodution numer</font>'''(亦称基本再生率)。该比率是在所有受试者都是易感类别的人群中,由一次感染引起的新感染的预期数量(这些新感染有时称为二次感染)得出的。如果我们说两次感染之间的典型时间是 <math>T_{c}=\beta^{-1}</math>,而康复之前的典型时间是 <math>T_{r}=|\gamma^{-1}</math> ,那么这个想法可能更容易被理解。由此可以得出,平均而言,在感染者康复之前,感染者与其他人的接触次数为: <math>T_{r}/T_{c}.</math>
      第283行: 第235行:  
By dividing the first differential equation by the third, separating the variables and integrating we get
 
By dividing the first differential equation by the third, separating the variables and integrating we get
   −
通过将第一个'''<font color="#ff8000">微分方程differential equation</font>'''除以第三个,分离变量并进行积分,我们得到了
+
通过将第一个'''<font color="#ff8000">微分方程differential equation</font>'''除以第三个微分方程,分离变量并进行积分,我们得到
      第289行: 第241行:  
:<math> S(t) = S(0) e^{-R_0(R(t) - R(0))/N}, </math>
 
:<math> S(t) = S(0) e^{-R_0(R(t) - R(0))/N}, </math>
   −
<math> S(t) = S(0) e^{-R_0(R(t) - R(0))/N}, </math>
  −
  −
< math > s (t) = s (0) e ^ {-r _ 0(r (t)-r (0))/n } ,</math >
        第305行: 第254行:  
Writing <math>s_0 = S(0) / N</math> for the initial proportion of susceptible individuals, and
 
Writing <math>s_0 = S(0) / N</math> for the initial proportion of susceptible individuals, and
   −
为易感人群的初始比例编写<math>S_0=S(0)/N</math>,以及
+
易感人群的初始比例<math>S_0=S(0)/N</math>,以及
 +
 
 +
<math>s_\infty = S(\infty) / N</math> and <math>r_\infty = R(\infty) / N</math> for the proportion of susceptible and removed individuals respectively in the limit <math>t \to \infty,</math> one has
 +
 
 +
<math>s_\infty = S(\infty) / N</math> and <math>r_\infty = R(\infty) / N</math> for the proportion of susceptible and removed individuals respectively in the limit <math>t \to \infty,</math> one has
   −
<math>s_\infty = S(\infty) / N</math> and
     −
<math>s_\infty = S(\infty) / N</math> and
     −
[math] s infty = S(\infty)/N</math>并且
     −
<math>r_\infty = R(\infty) / N</math> for the proportion of susceptible and removed individuals respectively
     −
<math>r_\infty = R(\infty) / N</math> for the proportion of susceptible and removed individuals respectively
     −
敏感个体和被感染个体的比例分别为R(\infty)/N</math>  
+
在<math>t \to \infty,</math>的极限条件下,易感个体和染病个体的比例分别为<math>s_\infty = S(\infty) / N</math> 和 <math>r_\infty = R(\infty) / N</math>。此时有
 +
 
 +
 
   −
in the limit <math>t \to \infty,</math> one has
     −
in the limit <math>t \to \infty,</math> one has
     −
在这个极限里,<math>t \to \infty,</math> 一个人又
        第329行: 第276行:  
:<math>s_\infty = 1 - r_\infty = s_0 e^{-R_0(r_\infty - r_0)}</math>
 
:<math>s_\infty = 1 - r_\infty = s_0 e^{-R_0(r_\infty - r_0)}</math>
   −
<math>s_\infty = 1 - r_\infty = s_0 e^{-R_0(r_\infty - r_0)}</math>
+
 
  −
< math > s_\infty = 1-r _\infty = s_0 e ^{-R_0(r _\infty -r _0)}</math >
        第339行: 第284行:  
(note that the infectious compartment empties in this limit).
 
(note that the infectious compartment empties in this limit).
   −
(请注意,在这个限度内,没有感病者)。
+
(请注意,在这个极限时,没有染病者)。
    
This [[transcendental equation]] has a solution in terms of the [[Lambert W function|Lambert {{mvar|W}} function]],<ref>{{cite web |author1=Wolfram Research, Inc. |title=Mathematica, Version 12.1 |url=https://www.wolfram.com/mathematica |publisher=Champaign IL, 2020}}</ref> namely  
 
This [[transcendental equation]] has a solution in terms of the [[Lambert W function|Lambert {{mvar|W}} function]],<ref>{{cite web |author1=Wolfram Research, Inc. |title=Mathematica, Version 12.1 |url=https://www.wolfram.com/mathematica |publisher=Champaign IL, 2020}}</ref> namely  
第345行: 第290行:  
This transcendental equation has a solution in terms of the Lambert  function, namely  
 
This transcendental equation has a solution in terms of the Lambert  function, namely  
   −
这个超越方程有一个关于Lambert函数的解决方案,即
+
这个超越方程有一个Lambert函数解,即
      第351行: 第296行:  
:<math>s_\infty = 1-r_\infty = - R_0^{-1}\, W(-s_0 R_0 e^{-R_0(1-r_0)}).</math>
 
:<math>s_\infty = 1-r_\infty = - R_0^{-1}\, W(-s_0 R_0 e^{-R_0(1-r_0)}).</math>
   −
<math>s_\infty = 1-r_\infty = - R_0^{-1}\, W(-s_0 R_0 e^{-R_0(1-r_0)}).</math>
+
 
  −
< math > s _ infty = 1-r _ infty =-r _ 0 ^ {-1} ,w (- s _ 0 r _ 0 e ^ {-r _ 0(1-r _ 0)}) </math >
        第361行: 第304行:  
This shows that at the end of an epidemic, unless <math>s_0=0</math>, not all individuals of the population have been removed, so some must remain susceptible. This means that the end of an epidemic is caused by the decline in the number of infectious individuals rather than an absolute lack of susceptible subjects.  
 
This shows that at the end of an epidemic, unless <math>s_0=0</math>, not all individuals of the population have been removed, so some must remain susceptible. This means that the end of an epidemic is caused by the decline in the number of infectious individuals rather than an absolute lack of susceptible subjects.  
   −
这表明,在流行病结束时,除非<math>s_0=0</math>,否则只要有人没有康复,一些人仍然易受感染。这意味着传染病的结束是由于感病者的减少,而不是由于完全没有易感者。
+
这表明,在流行病结束时,除非<math>s_0=0</math>,否则一定有个体没有转化为康复状态,一些人仍然是易感类别。这意味着,传染病的结束是由于染病者的减少,而不是完全由于没有易感者。
      第369行: 第312行:  
The role of both the basic reproduction number and the initial susceptibility are extremely important. In fact, upon rewriting the equation for infectious individuals as follows:
 
The role of both the basic reproduction number and the initial susceptibility are extremely important. In fact, upon rewriting the equation for infectious individuals as follows:
   −
'''<font color="#ff8000">基本再生数basic reprodution numer</font>'''的作用和最初的易感性都极其重要。事实上,将传染性个体的等式重写如下:
+
'''<font color="#ff8000">基本再生数basic reprodution numer</font>'''和最初的易感人群比例的作用都极其重要。事实上,将易感者人群数量变化的等式可以重写成如下形式:
      第375行: 第318行:  
:<math> \frac{dI}{dt} = \left(R_0 \frac{S}{N}  - 1\right) \gamma I,</math>
 
:<math> \frac{dI}{dt} = \left(R_0 \frac{S}{N}  - 1\right) \gamma I,</math>
   −
<math> \frac{dI}{dt} = \left(R_0 \frac{S}{N} - 1\right) \gamma I,</math>
+
   
 
  −
<math> \frac{dI}{dt} = \left(R_0 \frac{S}{N} -1 \right) \gamma I,</math>
        第385行: 第326行:  
it yields that if:
 
it yields that if:
   −
它产生的条件是:
+
如果:
      第391行: 第332行:  
:<math> R_{0} \cdot S(0) > N,</math>
 
:<math> R_{0} \cdot S(0) > N,</math>
   −
<math> R_{0} \cdot S(0) > N,</math>
  −
  −
<math> R_{0} \cdot S(0) > N,</math>
        第401行: 第339行:  
then:
 
then:
   −
然后:
+
那么:
      第407行: 第345行:  
:<math> \frac{dI}{dt}(0) >0 ,</math>
 
:<math> \frac{dI}{dt}(0) >0 ,</math>
   −
<math> \frac{dI}{dt}(0) >0 ,</math>
  −
  −
</math> \frac{dI}{dt}(0) > ,</math>
        第417行: 第352行:  
i.e., there will be a proper epidemic outbreak with an increase of the number of the  infectious (which can reach a considerable fraction of the population). On the contrary, if
 
i.e., there will be a proper epidemic outbreak with an increase of the number of the  infectious (which can reach a considerable fraction of the population). On the contrary, if
   −
也就是说,随着感病者数量的增加(达到人口相当大的一个比例) ,将会有一场适当的流行病爆发。相反,如果
+
也就是说,随着染病者数量的增加(达到人口相当大的一个比例) ,将会有一场流行病的爆发。相反,如果
      第423行: 第358行:  
:<math> R_{0} \cdot S(0) < N,</math>
 
:<math> R_{0} \cdot S(0) < N,</math>
   −
<math> R_{0} \cdot S(0) < N,</math>
  −
  −
<math> R_{0} \cdot S(0) < N,</math>
        第439行: 第371行:  
:<math> \frac{dI}{dt}(0) <0 ,</math>
 
:<math> \frac{dI}{dt}(0) <0 ,</math>
   −
<math> \frac{dI}{dt}(0) <0 ,</math>
  −
  −
<math> \frac{dI}{dt}(0) <0 ,</math>
        第449行: 第378行:  
i.e., independently from the initial size of the susceptible population the disease can never cause a proper epidemic outbreak. As a consequence, it is clear that both the basic reproduction number and the initial susceptibility are extremely important.
 
i.e., independently from the initial size of the susceptible population the disease can never cause a proper epidemic outbreak. As a consequence, it is clear that both the basic reproduction number and the initial susceptibility are extremely important.
   −
也就是说,如果与易感者的初始规模无关,这种疾病将永远不会引起适当的流行病爆发。因此,很明显,'''<font color="#ff8000">基本再生数basic reprodution numer</font>'''和最初的易感性都极其重要。
+
也就是说,这种情况与易感者的初始规模无关,这时疾病将不会引起流行病的爆发。因此,很明显,'''<font color="#ff8000">基本再生数basic reprodution numer</font>'''和最初的易感者人群数量都极其重要。
      第461行: 第390行:  
Note that in the above model the function:
 
Note that in the above model the function:
   −
注意,在上面的模型中,函数是:
+
注意,在上面的模型中,函数:
      第467行: 第396行:  
:<math> F = \beta I,</math>
 
:<math> F = \beta I,</math>
   −
<math> F = \beta I,</math>
  −
  −
<math> F = \beta I,</math>
        第477行: 第403行:  
models the transition rate from the compartment of susceptible individuals to the compartment of infectious individuals, so that it is called the force of infection. However, for large classes of communicable diseases it is more realistic to consider a force of infection that does not depend on the absolute number of infectious subjects, but on their fraction (with respect to the total constant population <math>N</math>):
 
models the transition rate from the compartment of susceptible individuals to the compartment of infectious individuals, so that it is called the force of infection. However, for large classes of communicable diseases it is more realistic to consider a force of infection that does not depend on the absolute number of infectious subjects, but on their fraction (with respect to the total constant population <math>N</math>):
   −
建立了从易感者到感病者的传染率模型,因此称之为'''<font color="#ff8000">感染力the force of infection</font>'''。然而,对于大类传染病来说,更现实的做法是考虑一种'''<font color="#ff8000">感染力the force of infection</font>''',这种传染力并不取决于感染对象的绝对数量,而是取决于感染对象的比例(就总人口而言<math>N</math>) :
+
建立了从易感者到染病者的传染率模型,这被称为'''<font color="#ff8000">感染力the force of infection</font>'''。然而,对于大部分传染病来说,更现实的做法是考虑一种'''<font color="#ff8000">感染力the force of infection</font>''',这种传染力并不取决于染病者人群的绝对数量,而是取决于染病者人群的比例(就总人口<math>N</math>而言) :
      第483行: 第409行:  
:<math> F = \beta \frac{I}{N} .</math>
 
:<math> F = \beta \frac{I}{N} .</math>
   −
<math> F = \beta \frac{I}{N} .</math>
  −
  −
<math> F = \beta \frac{I}{N} .</math>
        第493行: 第416行:  
Capasso and, afterwards, other authors have proposed nonlinear forces of infection to model more realistically the contagion process.  
 
Capasso and, afterwards, other authors have proposed nonlinear forces of infection to model more realistically the contagion process.  
   −
卡帕索和后来的其他作者提出了非线性的感染力以建立更现实的传染过程。
+
Capasso和后来的其他作者提出了非线性的感染力,以建模更现实的传染过程。
      第505行: 第428行:  
In 2014, Harko and coauthors derived an exact analytical solution to the SIR model. In the case  without vital dynamics setup, for <math>\mathcal{S}(u)=S(t)</math>, etc., it corresponds to the following time parametrization
 
In 2014, Harko and coauthors derived an exact analytical solution to the SIR model. In the case  without vital dynamics setup, for <math>\mathcal{S}(u)=S(t)</math>, etc., it corresponds to the following time parametrization
   −
2014年,Harko 和合作者推导出了 SIR 模型的精确'''<font color="#ff8000">解析解analytical solution</font>'''。在没有重要动力学设置的情况下,对于 <math>\mathcal{S}(u) =S(t)</math> 等,它对应以下参数化时间
+
2014年,Harko 和合作者推导出了 SIR 模型的精确'''<font color="#ff8000">解析解analytical solution</font>'''。在没有考虑正常出生和死亡生命动力学的情况下,对于 <math>\mathcal{S}(u) =S(t)</math> 等,它对应以下时间参数化
          
:<math>\mathcal{S}(u)= S(0)u </math>
 
:<math>\mathcal{S}(u)= S(0)u </math>
  −
<math>\mathcal{S}(u)= S(0)u </math>
  −
  −
<math>\mathcal{S}(u)= S(0)u </math>
      
:<math>\mathcal{I}(u)= N -\mathcal{R}(u)-\mathcal{S}(u) </math>
 
:<math>\mathcal{I}(u)= N -\mathcal{R}(u)-\mathcal{S}(u) </math>
  −
<math>\mathcal{I}(u)= N -\mathcal{R}(u)-\mathcal{S}(u) </math>
  −
  −
<math>\mathcal{I}(u)= N -\mathcal{R}(u)-\mathcal{S}(u) </math>
      
:<math>\mathcal{R}(u)=R(0) -\rho \ln(u)</math>
 
:<math>\mathcal{R}(u)=R(0) -\rho \ln(u)</math>
   −
<math>\mathcal{R}(u)=R(0) -\rho \ln(u)</math>
+
 
  −
<math>\mathcal{R}(u)=R(0) -\rho \ln(u)</math>
        第539行: 第452行:  
:<math>t= \frac{N}{\beta}\int_u^1 \frac{du^*}{u^*\mathcal{I}(u^*)} , \quad \rho=\frac{\gamma N}{\beta},</math>
 
:<math>t= \frac{N}{\beta}\int_u^1 \frac{du^*}{u^*\mathcal{I}(u^*)} , \quad \rho=\frac{\gamma N}{\beta},</math>
   −
<math>t= \frac{N}{\beta}\int_u^1 \frac{du^*}{u^*\mathcal{I}(u^*)} , \quad \rho=\frac{\gamma N}{\beta},</math>
  −
  −
<math>t= \frac{N}{\beta}\int_u^1 \frac{du^*}{u^*\mathcal{I}(u^*)} , \quad \rho=\frac{\gamma N}{\beta},</math>
        第549行: 第459行:  
with initial conditions  
 
with initial conditions  
   −
和初始条件
+
有初始条件
      第555行: 第465行:  
:<math>(\mathcal{S}(1),\mathcal{I}(1),\mathcal{R}(1))=(S(0),N -R(0)-S(0),R(0)), \quad  u_T<u<1,</math>
 
:<math>(\mathcal{S}(1),\mathcal{I}(1),\mathcal{R}(1))=(S(0),N -R(0)-S(0),R(0)), \quad  u_T<u<1,</math>
   −
<math>(\mathcal{S}(1),\mathcal{I}(1),\mathcal{R}(1))=(S(0),N -R(0)-S(0),R(0)), \quad  u_T<u<1,</math>
  −
  −
<math>(\mathcal{S}(1),\mathcal{I}(1),\mathcal{R}(1))=(S(0),N -R(0)-S(0),R(0)), \quad  u_T<u<1,</math>
        第565行: 第472行:  
where <math>u_T</math> satisfies <math>\mathcal{I}(u_T)=0</math>. By the transcendental equation for <math>R_{\infty}</math> above, it follows that <math>u_T=e^{-(R_{\infty}-R(0))/\rho}(=S_{\infty}/S(0)</math>, if <math>S(0) \neq 0)</math> and <math>I_{\infty}=0</math>.
 
where <math>u_T</math> satisfies <math>\mathcal{I}(u_T)=0</math>. By the transcendental equation for <math>R_{\infty}</math> above, it follows that <math>u_T=e^{-(R_{\infty}-R(0))/\rho}(=S_{\infty}/S(0)</math>, if <math>S(0) \neq 0)</math> and <math>I_{\infty}=0</math>.
   −
其中<math>u_T</math>满足<math>\mathcal{I}(u_T)=0</math>。根据上面的'''<font color="#ff8000">超越方程transcendental equation</font>''' <math>R_{\infty}</math> ,如果<math>S(0) \neq 0)</math> and <math>I_{\infty}=0</math>,那么遵守<math>u_T=e^{-(R_{\infty}-R(0))/\rho}(=S_{\infty}/S(0)</math>。
+
其中<math>u_T</math>满足<math>\mathcal{I}(u_T)=0</math>。根据上面的'''<font color="#ff8000">超越方程transcendental equation</font>''' <math>R_{\infty}</math> ,如果<math>S(0) \neq 0)</math> and <math>I_{\infty}=0</math>,那么<math>u_T=e^{-(R_{\infty}-R(0))/\rho}(=S_{\infty}/S(0)</math>。
      第574行: 第481行:     
等价的'''<font color="#ff8000">解析解analytical solution</font>'''由米勒发现
 
等价的'''<font color="#ff8000">解析解analytical solution</font>'''由米勒发现
         
:<math>
 
:<math>
 +
\begin{align}
 +
S(t) & = S(0) e^{-\xi(t)} \\[8pt]
 +
I(t) & = N-S(t)-R(t) \\[8pt]
 +
R(t) & = R(0) + \rho \xi(t) \\[8pt]
 +
\xi(t) & = \frac{\beta}{N}\int_0^t I(t^*) \, dt^*
 +
\end{align}
 +
</math>
   −
<math>
     −
<math>
     −
\begin{align}
     −
\begin{align}
     −
\开始{ align }
     −
S(t) & = S(0) e^{-\xi(t)} \\[8pt]
+
Here <math>\xi(t)</math> can be interpreted as the expected number of transmissions an individual has received by time <math>t</math>.  The two solutions are related by <math>e^{-\xi(t)} = u</math>.
   −
S(t) & = S(0) e^{-\xi(t)} \\[8pt]
+
Here <math>\xi(t)</math> can be interpreted as the expected number of transmissions an individual has received by time <math>t</math>.  The two solutions are related by <math>e^{-\xi(t)} = u</math>.
   −
S (t) & = s (0) e ^ {-xi (t)}[8 pt ]
+
在这里,<math>\xi(t)</math>可以解释为随着时间<math>t</math>变化,一个人预期接触到的染病者数量。这两个解是通过<math>e^{-\xi(t)} = u</math>相关联的。
   −
I(t) & = N-S(t)-R(t) \\[8pt]
     −
I(t) & = N-S(t)-R(t) \\[8pt]
     −
I (t) & = N-S (t)-r (t)[8 pt ]
+
Effectively the same result can be found in the original work by Kermack and McKendrick.<ref name="Kermack–McKendrick" />
   −
R(t) & = R(0) + \rho \xi(t) \\[8pt]
+
Effectively the same result can be found in the original work by Kermack and McKendrick.
   −
R(t) & = R(0) + \rho \xi(t) \\[8pt]
+
实际上,同样的结果可以在Kermack 和 McKendrick的原著中找到。
   −
R (t) & = r (0) + rho xi (t)[8 pt ]
     −
\xi(t) & = \frac{\beta}{N}\int_0^t I(t^*) \, dt^*
     −
\xi(t) & = \frac{\beta}{N}\int_0^t I(t^*) \, dt^*
+
These solutions may be easily understood by noting that all of the terms on the right-hand sides of the original differential equations are proportional to <math>I</math>. The equations may thus be divided through by <math>I</math>, and the time rescaled so that the differential operator on the left-hand side becomes simply <math>d/d\tau</math>, where <math>d\tau=I dt</math>, i.e. <math>\tau=\int I dt</math>. The differential equations are now all linear, and the third equation, of the form <math>dR/d\tau =</math> const., shows that <math>\tau</math> and <math>R</math> (and <math>\xi</math> above) are simply linearly related.
   −
Xi (t) & = frac { beta }{ n } int _ 0 ^ t i (t ^ *) ,dt ^ *
+
These solutions may be easily understood by noting that all of the terms on the right-hand sides of the original differential equations are proportional to <math>I</math>. The equations may thus be divided through by <math>I</math>, and the time rescaled so that the differential operator on the left-hand side becomes simply <math>d/d\tau</math>, where <math>d\tau=I dt</math>, i.e. <math>\tau=\int I dt</math>. The differential equations are now all linear, and the third equation, of the form <math>dR/d\tau =</math> const., shows that <math>\tau</math> and <math>R</math> (and <math>\xi</math> above) are simply linearly related.
   −
\end{align}
+
注意到原微分方程右边的所有项都与<math>I</math>成正比,这些解就很容易理解了。这样,方程组就可以通过<math>I</math>来分解,通过时间重缩放,使得左边的微分算子变成<math>d/d\tau</math>,其中<math>d\tau=I dt</math>,即 <math>\tau=\int I dt</math>。这些微分方程现在都是线性的,而第三个方程,即形式为<math>dR/d\tau =</math> 的常量,表明 <math>\tau</math>和<math>R</math>(和<math>\xi</math>)仅仅是线性关系。
   −
\end{align}
     −
\结束{ align }
     −
</math>
+
===The SIR model with vital dynamics and constant population===
   −
</math>
+
具有生命动力学和稳定人口的SIR模型
   −
</math>
+
Consider a population characterized by a death rate <math>\mu</math> and birth rate <math>\Lambda</math>, and where a communicable disease is spreading<ref name="Beckley"/>. The model with mass-action transmission is:
    +
Consider a population characterized by a death rate <math>\mu</math> and birth rate <math>\Lambda</math>, and where a communicable disease is spreading. The model with mass-action transmission is:
    +
考虑有死亡率<math>\mu</math>和出生率<math>\Lambda</math>的人群,以及正在传播的传染病。具有质量作用传递的模型是:
      −
Here <math>\xi(t)</math> can be interpreted as the expected number of transmissions an individual has received by time <math>t</math>.  The two solutions are related by <math>e^{-\xi(t)} = u</math>.
     −
Here <math>\xi(t)</math> can be interpreted as the expected number of transmissions an individual has received by time <math>t</math>.  The two solutions are related by <math>e^{-\xi(t)} = u</math>.
+
:<math>
 +
\begin{align}
 +
\frac{dS}{dt} & = \Lambda - \mu S - \frac{\beta I S}{N} \\[8pt]
 +
\frac{dI}{dt} & = \frac{\beta I S}{N} - \gamma I -\mu I \\[8pt]
 +
\frac{dR}{dt} & = \gamma I  - \mu R
 +
\end{align}
 +
</math>
   −
在这里,<math>\xi(t)</math>可以解释为随着时间<math>t</math>变化一个人预期收到的传染数量。这两个解是通过<math>e^{-\xi(t)} = u</math>关联的。
           −
Effectively the same result can be found in the original work by Kermack and McKendrick.<ref name="Kermack–McKendrick" />
+
for which the disease-free equilibrium (DFE) is:
   −
Effectively the same result can be found in the original work by Kermack and McKendrick.
+
for which the disease-free equilibrium (DFE) is:
   −
实际上,同样的结果可以在科马克和麦克德里克的原著中找到。
      +
其'''<font color="#ff8000">无病平衡点the disease-free quilibrium</font>'''为:
      −
These solutions may be easily understood by noting that all of the terms on the right-hand sides of the original differential equations are proportional to <math>I</math>. The equations may thus be divided through by <math>I</math>, and the time rescaled so that the differential operator on the left-hand side becomes simply <math>d/d\tau</math>, where <math>d\tau=I dt</math>, i.e. <math>\tau=\int I dt</math>. The differential equations are now all linear, and the third equation, of the form <math>dR/d\tau =</math> const., shows that <math>\tau</math> and <math>R</math> (and <math>\xi</math> above) are simply linearly related.
     −
These solutions may be easily understood by noting that all of the terms on the right-hand sides of the original differential equations are proportional to <math>I</math>. The equations may thus be divided through by <math>I</math>, and the time rescaled so that the differential operator on the left-hand side becomes simply <math>d/d\tau</math>, where <math>d\tau=I dt</math>, i.e. <math>\tau=\int I dt</math>. The differential equations are now all linear, and the third equation, of the form <math>dR/d\tau =</math> const., shows that <math>\tau</math> and <math>R</math> (and <math>\xi</math> above) are simply linearly related.
+
:<math>\left(S(t),I(t),R(t)\right) =\left(\frac{\Lambda}{\mu},0,0\right).</math>
   −
注意到原微分方程右边的所有项都与“数学”成正比,这些解就很容易理解了。这样,方程组就可以通过<math>I</math>来分解,时间重新调整,使得左边的微分算子变成<math>d/d\tau</math>,其中<math>d\tau=I dt</math>,即 <math>\tau=\int I dt</math>。这些微分方程现在都是线性的,而第三个方程,即形式为<math>dR/d\tau =</math> 的常量,表明 <math>\tau</math>和<math>R</math>(和上方的<math>\xi</math>)仅仅是线性关系。
           −
===The SIR model with vital dynamics and constant population===
     −
具有生命动力学和稳定人口的SIR模型
+
In this case, we can derive a [[basic reproduction number]]:
   −
Consider a population characterized by a death rate <math>\mu</math> and birth rate <math>\Lambda</math>, and where a communicable disease is spreading<ref name="Beckley"/>. The model with mass-action transmission is:
+
In this case, we can derive a basic reproduction number:
   −
Consider a population characterized by a death rate <math>\mu</math> and birth rate <math>\Lambda</math>, and where a communicable disease is spreading. The model with mass-action transmission is:
     −
考虑人口有死亡率<math>\mu</math>和出生率<math>\Lambda</math>的特点,以及正在传播的传染病。具有质量作用传递的模型是:
+
在这种情况下,我们可以得出一个基本再生数:
         −
:<math>
+
:<math> R_0 = \frac{ \beta\Lambda }{\mu(\mu+\gamma)}, </math>
   −
<math>
     −
<math>
     −
\begin{align}
+
which has threshold properties. In fact, independently from biologically meaningful initial values, one can show that:
   −
\begin{align}
+
which has threshold properties. In fact, independently from biologically meaningful initial values, one can show that:
   −
\开始{ align }
+
这种基本再生数具有临界性质。事实上,独立于具有生物学意义的初始值,我们可以证明:
   −
\frac{dS}{dt} & = \Lambda - \mu S - \frac{\beta I S}{N} \\[8pt]
     −
\frac{dS}{dt} & = \Lambda - \mu S - \frac{\beta I S}{N} \\[8pt]
      +
:<math> R_0 \le 1 \Rightarrow  \lim_{t \to \infty} (S(t),I(t),R(t)) = \textrm{DFE} = \left(\frac{\Lambda}{\mu},0,0\right) </math>
   −
\frac{dS}{dt} & = \Lambda - \mu S - \frac{\beta I S}{N} \\[8pt]
+
:<math> R_0 > 1 , I(0)> 0 \Rightarrow  \lim_{t \to \infty} (S(t),I(t),R(t)) = \textrm{EE} = \left(\frac{\gamma+\mu}{\beta},\frac{\mu}{\beta}\left(R_0-1\right), \frac{\gamma}{\beta} \left(R_0-1\right)\right). </math>
      −
\frac{dI}{dt} & = \frac{\beta I S}{N} - \gamma I -\mu I \\[8pt]
     −
\frac{dI}{dt} & = \frac{\beta I S}{N} - \gamma I -\mu I \\[8pt]
      +
The point EE is called the Endemic Equilibrium (the disease is not totally eradicated and remains in the population). With heuristic arguments, one may show that <math>R_{0}</math> may be read as the average number of infections caused by a single infectious subject in a wholly susceptible population, the above relationship biologically means that if this number is less than or equal to one the disease goes extinct, whereas if this number is greater than one the disease will remain permanently endemic in the population.
   −
\frac{dI}{dt} & = \frac{\beta I S}{N} - \gamma I -\mu I \\[8pt]
+
The point EE is called the Endemic Equilibrium (the disease is not totally eradicated and remains in the population). With heuristic arguments, one may show that <math>R_{0}</math> may be read as the average number of infections caused by a single infectious subject in a wholly susceptible population, the above relationship biologically means that if this number is less than or equal to one the disease goes extinct, whereas if this number is greater than one the disease will remain permanently endemic in the population.
    +
EE点被称为地方病平衡点(这种疾病还没有完全根除,仍然存在于人群中)。通过启发式的论证,表明<math>R_{0}</math>可以理解为在完全易感人群中,由一个染病者引起的平均感染人数,上述关系在生物学上意味着,如果这个数字小于或等于1,这种疾病就会灭绝,而如果这个数字大于1,这种疾病就会在人群中永久地流行下去。
   −
\frac{dR}{dt} & = \gamma I  - \mu R
     −
\frac{dR}{dt} & = \gamma I  - \mu R
      +
==Variations on the basic SIR model==
   −
\frac{dR}{dt} & = \gamma I  - \mu R
+
基础SIR模型的变化
    +
===The SIS model===
   −
\end{align}
+
SIS模型
   −
\end{align}
+
[[File: SIR-Modell.png |thumb|图4:Yellow=Susceptible, Maroon=Infected黄色=易感,栗色=感染]]
      −
结束{ align }
+
Some infections, for example, those from the [[common cold]] and [[influenza]], do not confer any long-lasting immunity. Such infections do not give immunity upon recovery from infection, and individuals become susceptible again.
    +
Some infections, for example, those from the common cold and influenza, do not confer any long-lasting immunity. Such infections do not give immunity upon recovery from infection, and individuals become susceptible again.
   −
</math>
+
有些传染病,例如普通感冒和流感,并不能产生持久的免疫力。这种传染病在感染康复后不会产生免疫力,个体会再次变为易感染类型。
   −
</math>
     −
</math>
      +
[[File:SIS compartment model.svg|400px|center|SIS compartmental model]]
    +
SIS compartmental model
   −
for which the disease-free equilibrium (DFE) is:
+
【图5:SIS compartmental modelSIS传染病模型】
   −
for which the disease-free equilibrium (DFE) is:
        −
其'''<font color="#ff8000">无病平衡点the disease-free quilibrium</font>'''为:
+
We have the model:
    +
We have the model:
    +
我们有以下模型:
   −
:<math>\left(S(t),I(t),R(t)\right) =\left(\frac{\Lambda}{\mu},0,0\right).</math>
     −
<math>\left(S(t),I(t),R(t)\right) =\left(\frac{\Lambda}{\mu},0,0\right).</math>
      +
:<math>
 +
\begin{align}
 +
\frac{dS}{dt} & = - \frac{\beta S I}{N} + \gamma I \\[6pt]
 +
\frac{dI}{dt} & = \frac{\beta S I}{N} - \gamma I
 +
\end{align}
 +
</math>
   −
<math>\left(S(t),I(t),R(t)\right) =\left(\frac{\Lambda}{\mu},0,0\right).</math>
           −
In this case, we can derive a [[basic reproduction number]]:
+
Note that denoting with ''N'' the total population it holds that:
   −
In this case, we can derive a basic reproduction number:
+
Note that denoting with N the total population it holds that:
    +
注意,用N表示人群总数:
   −
在这种情况下,我们可以得出一个基本再生数:
         +
:<math>\frac{dS}{dt} + \frac{dI}{dt} = 0 \Rightarrow S(t)+I(t) = N</math>.
   −
:<math> R_0 = \frac{ \beta\Lambda }{\mu(\mu+\gamma)}, </math>
     −
<math> R_0 = \frac{ \beta\Lambda }{\mu(\mu+\gamma)}, </math>
        −
<math> R_0 = \frac{ \beta\Lambda }{\mu(\mu+\gamma)}, </math>
+
It follows that:
    +
It follows that:
    +
由此可见:
   −
which has threshold properties. In fact, independently from biologically meaningful initial values, one can show that:
     −
which has threshold properties. In fact, independently from biologically meaningful initial values, one can show that:
     −
这种基本再生数具有临界性质。事实上,我们可以独立于具有生物学意义的初始值证明:
+
:<math> \frac{dI}{dt} = (\beta - \gamma)  I - \frac{\beta}{N} I^2 </math>,
         −
:<math> R_0 \le 1 \Rightarrow  \lim_{t \to \infty} (S(t),I(t),R(t)) = \textrm{DFE} = \left(\frac{\Lambda}{\mu},0,0\right) </math>
+
i.e. the dynamics of infectious is ruled by a [[logistic function]], so that <math>\forall I(0) > 0</math>:
   −
<math> R_0 \le 1 \Rightarrow  \lim_{t \to \infty} (S(t),I(t),R(t)) = \textrm{DFE} = \left(\frac{\Lambda}{\mu},0,0\right) </math>
+
i.e. the dynamics of infectious is ruled by a logistic function, so that <math>\forall I(0) > 0</math>:
   −
<math> R_0 \le 1 \Rightarrow  \lim_{t \to \infty} (S(t),I(t),R(t)) = \textrm{DFE} = \left(\frac{\Lambda}{\mu},0,0\right) </math>
+
也就是。传染病的动态性是由Logistic函数控制的,所以对于所有的<math>\forall I(0) > 0</math>:
   −
:<math> R_0 > 1 , I(0)> 0 \Rightarrow  \lim_{t \to \infty} (S(t),I(t),R(t)) = \textrm{EE} = \left(\frac{\gamma+\mu}{\beta},\frac{\mu}{\beta}\left(R_0-1\right), \frac{\gamma}{\beta} \left(R_0-1\right)\right). </math>
     −
<math> R_0 > 1 , I(0)> 0 \Rightarrow  \lim_{t \to \infty} (S(t),I(t),R(t)) = \textrm{EE} = \left(\frac{\gamma+\mu}{\beta},\frac{\mu}{\beta}\left(R_0-1\right), \frac{\gamma}{\beta} \left(R_0-1\right)\right). </math>
     −
<math> R_0 > 1 , I(0)> 0 \Rightarrow \lim_{t \to \infty} (S(t),I(t),R(t)) = \textrm{EE} = \left(\frac{\gamma+\mu}{\beta},\frac{\mu}{\beta}\left(R_0-1\right), \frac{\gamma}{\beta} \left(R_0-1\right)\right). </math>
+
:<math>
 +
\begin{align}
 +
& \frac{\beta}{\gamma} \le 1 \Rightarrow \lim_{t \to +\infty}I(t)=0, \\[6pt]
 +
& \frac{\beta}{\gamma} > 1 \Rightarrow \lim_{t \to +\infty}I(t) = \left(1 - \frac{\gamma}{\beta} \right) N.
 +
\end{align}
 +
</math>
         −
The point EE is called the Endemic Equilibrium (the disease is not totally eradicated and remains in the population). With heuristic arguments, one may show that <math>R_{0}</math> may be read as the average number of infections caused by a single infectious subject in a wholly susceptible population, the above relationship biologically means that if this number is less than or equal to one the disease goes extinct, whereas if this number is greater than one the disease will remain permanently endemic in the population.
     −
The point EE is called the Endemic Equilibrium (the disease is not totally eradicated and remains in the population). With heuristic arguments, one may show that <math>R_{0}</math> may be read as the average number of infections caused by a single infectious subject in a wholly susceptible population, the above relationship biologically means that if this number is less than or equal to one the disease goes extinct, whereas if this number is greater than one the disease will remain permanently endemic in the population.
+
It is possible to find an analytical solution to this model (by making a transformation of variables: <math>I = y^{-1}</math> and substituting this into the mean-field equations),<ref name=Hethcote1989>{{cite book |last=Hethcote |first=Herbert W. |chapter=Three Basic Epidemiological Models |title=Applied Mathematical Ecology |editor1-last=Levin |editor1-first=Simon A. |editor2-last=Hallam |editor2-first=Thomas G. |editor3-last=Gross |editor3-first=Louis J. |series=Biomathematics |volume=18 |publisher=Springer |location=Berlin |year=1989 |pages=119–144 |isbn=3-540-19465-7 |doi=10.1007/978-3-642-61317-3_5 }}</ref> such that the basic reproduction rate is greater than unity. The solution is given as
   −
EE点被称为地方病平衡点(这种疾病还没有完全根除,仍然存在于人群中)。通过启发式的论证,人们可以表明<math>R_{0}</math>可以理解为在一个完全易感人群中,由一个感染对象引起的平均感染人数,上述关系在生物学上意味着,如果这个数字小于或等于1,这种疾病就会灭绝,而如果这个数字大于1,这种疾病就会在人群中永久地流行下去。
+
It is possible to find an analytical solution to this model (by making a transformation of variables: <math>I = y^{-1}</math> and substituting this into the mean-field equations), such that the basic reproduction rate is greater than unity. The solution is given as
    +
这个模型可以找到一个'''<font color="#ff8000">解析解analytical solution</font>'''(通过对变量进行变换:<math>I = y^{-1}</math> 并将其代入'''<font color="#ff8000">平均场方程the mean-field euations</font>''') ,使基本再生率大于单位数。给出了解如下:
      −
==Variations on the basic SIR model==
     −
基础SIR模型的变化
+
:<math>I(t) = \frac{I_\infty}{1+V e^{-\chi t}}</math>.
   −
===The SIS model===
     −
SIS模型
+
where <math>I_\infty = (1 -\gamma/\beta)N</math> is the endemic infectious population, <math>\chi = \beta-\gamma</math>, and <math>V = I_\infty/I_0 - 1</math>. As the system is assumed to be closed, the susceptible population is then <math>S(t) = N - I(t)</math>.
   −
[[File:SIS System Graph.svg|thumb|Yellow=Susceptible, Maroon=Infected]]
+
where <math>I_\infty = (1 -\gamma/\beta)N</math> is the endemic infectious population, <math>\chi = \beta-\gamma</math>, and <math>V = I_\infty/I_0 - 1</math>. As the system is assumed to be closed, the susceptible population is then <math>S(t) = N - I(t)</math>.
   −
Yellow=Susceptible, Maroon=Infected
+
其中 <math>I_\infty = (1 -\gamma/\beta)N</math>是地方性传染病人群数量,<math>\chi = \beta-\gamma</math>, <math>V = I_\infty/I_0 - 1</math>。假设系统是封闭的,那么易感者人群数量是<math>S(t) = N - I(t)</math>。
   −
【图4:Yellow=Susceptible, Maroon=Infected黄色=易感,栗色=感染】
     −
Some infections, for example, those from the [[common cold]] and [[influenza]], do not confer any long-lasting immunity. Such infections do not give immunity upon recovery from infection, and individuals become susceptible again.
     −
Some infections, for example, those from the common cold and influenza, do not confer any long-lasting immunity. Such infections do not give immunity upon recovery from infection, and individuals become susceptible again.
+
As a special case, one obtains the usual logistic function by assuming <math>\gamma=0</math>. This can be also considered in the SIR model with <math>R=0</math>, i.e. no removal will take place. That is the ''SI model''.<ref>[http://math.colgate.edu/~wweckesser/math312Spring06/handouts/IMM_SI_Model.pdf (p. 19) The SI Model]</ref> The differential equation system using <math>S=N-I</math> thus reduces to:
   −
有些传染病,例如普通感冒和流感,并不能提供任何持久的免疫力。这种感染在感染康复后不会产生免疫力,个体易再次感染。
+
As a special case, one obtains the usual logistic function by assuming <math>\gamma=0</math>. This can be also considered in the SIR model with <math>R=0</math>, i.e. no removal will take place. That is the SI model. The differential equation system using <math>S=N-I</math> thus reduces to:
    +
作为一种特殊情况,通过假设<math>R=0</math>得到通常的 Logistic函数。这也可以在 SIR 模型中考虑,该模型有<math>R=0</math>,即没有康复者。这就是SI模型。微分方程系统使用<math>S=N-I</math>,因此可以简化为:
      −
[[File:SIS compartment model.svg|400px|center|SIS compartmental model]]
     −
SIS compartmental model
+
:<math>
 +
\frac{dI}{dt}  \propto  I\cdot (N-I).
 +
</math>
   −
【图5:SIS compartmental modelSIS传染病模型】
         +
In the long run, in this model, all individuals will become infected.
   −
We have the model:
+
In the long run, in this model, all individuals will become infected.
   −
We have the model:
+
从长远来看,在这种模式下,所有的个体都会被感染。
   −
我们有一个模型:
         +
===The SIRD model===
   −
:<math>
+
SIRD模型
   −
<math>
+
[[File:SIRD.svg|thumb|Diagram of the SIRD model with initial values <math>S(0)=997, I(0)=3, R(0)=0</math> and the rates for infection <math>\beta=0.4</math>, recovery <math>\gamma=0.035</math> and mortality <math>\mu=0.005</math>]]
   −
<math>
+
Diagram of the SIRD model with initial values <math>S(0)=997, I(0)=3, R(0)=0</math> and the rates for infection <math>\beta=0.4</math>, recovery <math>\gamma=0.035</math> and mortality <math>\mu=0.005</math>
   −
\begin{align}
+
【图6:Diagram of the SIRD model with initial values <math>S(0)=997, I(0)=3, R(0)=0</math> and the rates for infection <math>\beta=0.4</math>, recovery <math>\gamma=0.035</math> and mortality <math>\mu=0.005</math>SIRD模型示意图,初始值<math>S(0)=997,I(0)=3, R(0)=0</math>,感染率<math>\beta=0.4</math>,康复率<math>\gamma=0.035</math>,死亡率 <math>\mu=0.005</math>】
   −
\begin{align}
+
[[File:SIRD model anim.gif|thumb|Animation of the SIRD model with initial values <math display="inline">S(0)=997, I(0)=3, R(0)=0</math>, initial rate for infection <math display="inline">\beta=0.5</math> and constant rates for recovery <math display="inline">\gamma=0.035</math> and mortality <math display="inline">\mu=0.005</math>. If there is neither medicine nor vaccination available, it is only possible to reduce the infection rate (often referred to as „flattening the curve“) by appropriate measures (e.&nbsp;g. „social distancing“). This animation shows the impact of reducing the infection rate by 76&nbsp;% (from <math display="inline">\beta=0.5</math> down to <math display="inline">\beta=0.12</math>).]]
   −
\开始{ align }
+
Animation of the SIRD model with initial values <math display="inline">S(0)=997, I(0)=3, R(0)=0</math>, initial rate for infection <math display="inline">\beta=0.5</math> and constant rates for recovery <math display="inline">\gamma=0.035</math> and mortality <math display="inline">\mu=0.005</math>. If there is neither medicine nor vaccination available, it is only possible to reduce the infection rate (often referred to as „flattening the curve“) by appropriate measures (e.&nbsp;g. „social distancing“). This animation shows the impact of reducing the infection rate by 76&nbsp;% (from <math display="inline">\beta=0.5</math> down to <math display="inline">\beta=0.12</math>).
   −
\frac{dS}{dt} & = - \frac{\beta S I}{N} + \gamma I \\[6pt]
+
【图7:Animation of the SIRD model with initial values <math display="inline">S(0)=997, I(0)=3, R(0)=0</math>, initial rate for infection <math display="inline">\beta=0.5</math> and constant rates for recovery <math display="inline">\gamma=0.035</math> and mortality <math display="inline">\mu=0.005</math>. If there is neither medicine nor vaccination available, it is only possible to reduce the infection rate (often referred to as „flattening the curve“) by appropriate measures (e.&nbsp;g. „social distancing“). This animation shows the impact of reducing the infection rate by 76&nbsp;% (from <math display="inline">\beta=0.5</math> down to <math display="inline">\beta=0.12</math>)SIRD模型动画,初始值<math display="inline">S(0)=997I(0)=3, R(0)=0</math>,初始感染率 <math display="inline">\beta=0.5</math>和恒定康复率 <math display="inline">\gamma=0.035</math> 和死亡率<math display="inline">\mu=0.005</math>。如果既没有药物也没有疫苗可用,只有通过适当的措施(例如“社会距离”)才有可能降低感染率(通常称为“平缓曲线”)。这个动画展示了降低感染率76% 的效果(从 <math display="inline">\beta=0.5</math>下降到<math display="inline">\beta=0.12</math>)。】
   −
\frac{dS}{dt} & = - \frac{\beta S I}{N} + \gamma I \\[6pt]
     −
\frac{dS}{dt} & = - \frac{\beta S I}{N} + \gamma I \\[6pt]
     −
\frac{dI}{dt} & = \frac{\beta S I}{N} - \gamma I
+
The ''Susceptible-Infectious-Recovered-Deceased-Model'' differentiates between ''Recovered'' (meaning specifically individuals having survived the disease and now immune) and ''Deceased''.{{cn|date=June 2020}} This model uses the following system of differential equations:
   −
\frac{dI}{dt} & = \frac{\beta S I}{N} - \gamma I
+
The Susceptible-Infectious-Recovered-Deceased-Model differentiates between Recovered (meaning specifically individuals having survived the disease and now immune) and Deceased. This model uses the following system of differential equations:
   −
\frac{dI}{dt} & = \frac{\beta S I}{N} - \gamma I
+
易感-染病-康复-死亡-模型区分了康复者(特别是指从疾病中存活下来并且现已免疫的个体)和死亡者。该模型使用了下列微分方程组:
    +
:<math>
 +
\begin{align}
 +
& \frac{dS}{dt} = - \frac{\beta I S}{N}, \\[6pt]
 +
& \frac{dI}{dt} = \frac{\beta I S}{N} - \gamma I - \mu I, \\[6pt]
 +
& \frac{dR}{dt} = \gamma I, \\[6pt]
 +
& \frac{dD}{dt} = \mu I,
 
\end{align}
 
\end{align}
 +
</math>
   −
\end{align}
     −
\结束{ align }
+
where <math>\beta, \gamma, \mu</math> are the rates of infection, recovery, and mortality, respectively.<ref>The first and second differential equations are transformed and brought to the same form as for the ''SIR model'' above.</ref>
   −
</math>
+
where <math>\beta, \gamma, \mu</math> are the rates of infection, recovery, and mortality, respectively.
   −
</math>
+
这里<math>\beta, \gamma, \mu</math>分别是感染率,康复率和死亡率。
   −
</math>
         +
===The MSIR model===
   −
Note that denoting with ''N'' the total population it holds that:
+
MSIR模型
   −
Note that denoting with N the total population it holds that:
+
For many infections, including [[measles]], babies are not born into the susceptible compartment but are immune to the disease for the first few months of life due to protection from maternal antibodies (passed across the [[placenta]] and additionally through [[colostrum]]). This is called [[passive immunity]]. This added detail can be shown by including an M class (for maternally derived immunity) at the beginning of the model.
   −
注意,用N表示它所拥有的总人口:
+
For many infections, including measles, babies are not born into the susceptible compartment but are immune to the disease for the first few months of life due to protection from maternal antibodies (passed across the placenta and additionally through colostrum). This is called passive immunity. This added detail can be shown by including an M class (for maternally derived immunity) at the beginning of the model.
    +
对于包括麻疹在内的许多传染病,婴儿出生时并不易感染,由于母体抗体的保护(通过胎盘和初乳传播) ,婴儿在出生后的头几个月对该疾病免疫。这叫做被动免疫。这个额外的细节可以通过在模型的开始加入一个M类型(用于母系免疫)来显示。
      −
:<math>\frac{dS}{dt} + \frac{dI}{dt} = 0 \Rightarrow S(t)+I(t) = N</math>.
     −
<math>\frac{dS}{dt} + \frac{dI}{dt} = 0 \Rightarrow S(t)+I(t) = N</math>.
+
[[File:MSIR.PNG|800px|center|MSIR compartmental model]]To indicate this mathematically, an additional compartment is added, ''M''(''t'')''.'' This results in the following differential equations:
   −
<math>\frac{dS}{dt} + \frac{dI}{dt} = 0 \Rightarrow S(t)+I(t) = N</math>.
+
MSIR compartmental modelTo indicate this mathematically, an additional compartment is added, M(t). This results in the following differential equations:
    +
【图8:MSIR compartmental model. To indicate this mathematically, an additional compartment is added, M(t). This results in the following differential equations:MSIR 房室模型为了从数学上表示这一点,增加了一个额外的分类,M(t)。这导致了下列微分方程:】
      −
It follows that:
     −
It follows that:
+
::<math>
 +
\begin{align}
 +
\frac{dM}{dT} & = \Lambda - \delta M - \mu M\\[8pt]
 +
\frac{dS}{dT} & = \delta M - \frac{\beta SI}{N} - \mu S\\[8pt]
 +
\frac{dI}{dT} & = \frac{\beta SI}{N} - \gamma I - \mu I\\[8pt]
 +
\frac{dR}{dT} & = \gamma I - \mu R
 +
\end{align}
 +
</math>
   −
由此可见:
           −
:<math> \frac{dI}{dt} = (\beta - \gamma)  I - \frac{\beta}{N} I^2 </math>,
+
===Carrier state===
   −
<math> \frac{dI}{dt} = (\beta - \gamma)  I - \frac{\beta}{N} I^2 </math>,
+
病原携带状态
   −
<math> \frac{dI}{dt} = (\beta - \gamma) I - \frac{\beta}{N} I^2 </math>,
+
Some people who have had an infectious disease such as [[tuberculosis]] never completely recover and continue to [[asymptomatic carrier|carry]] the infection, whilst not suffering the disease themselves. They may then move back into the infectious compartment and suffer symptoms (as in tuberculosis) or they may continue to infect others in their carrier state, while not suffering symptoms. The most famous example of this is probably [[Mary Mallon]], who infected 22 people with [[typhoid fever]]. The carrier compartment is labelled C.
    +
Some people who have had an infectious disease such as tuberculosis never completely recover and continue to carry the infection, whilst not suffering the disease themselves. They may then move back into the infectious compartment and suffer symptoms (as in tuberculosis) or they may continue to infect others in their carrier state, while not suffering symptoms. The most famous example of this is probably Mary Mallon, who infected 22 people with typhoid fever. The carrier compartment is labelled C.
   −
i.e. the dynamics of infectious is ruled by a [[logistic function]], so that <math>\forall I(0) > 0</math>:
+
一些患有肺结核等传染病的人永远不会完全康复,而是继续携带这种传染病,同时他们自己也不会患上这种疾病。他们可能回归到染病者状态并出现症状(如肺结核),或者他们可能继续以携带者的状态传染给其他人,而不出现症状。最著名的例子可能是Mary Mallon,她将伤寒传染给了22个人。携带者被标记为C。
   −
i.e. the dynamics of infectious is ruled by a logistic function, so that <math>\forall I(0) > 0</math>:
     −
也就是。传染病的动态性是由Logistic函数控制的,所以对于所有的<math>\forall I(0) > 0</math>:
      +
[[File:SIR with carrier model.png|A simple modification of previous image by Viki Male to make the word "Carrier" plainly visible.]]
    +
A simple modification of previous image by Viki Male to make the word "Carrier" plainly visible.
   −
:<math>
+
【图9:A simple modification of previous image by Viki Male to make the word "Carrier" plainly visible.对维基马累之前形象的一个简单修改,使单词“携带者”清晰可见。】
   −
<math>
     −
<math>
     −
\begin{align}
+
===The SEIR model===
   −
\begin{align}
+
SEIR模型
   −
\开始{ align }
+
For many important infections, there is a significant incubation period during which individuals have been infected but are not yet infectious themselves. During this period the individual is in compartment ''E'' (for exposed).
   −
& \frac{\beta}{\gamma} \le 1 \Rightarrow \lim_{t \to +\infty}I(t)=0, \\[6pt]
+
For many important infections, there is a significant incubation period during which individuals have been infected but are not yet infectious themselves. During this period the individual is in compartment E (for exposed).
   −
& \frac{\beta}{\gamma} \le 1 \Rightarrow \lim_{t \to +\infty}I(t)=0, \\[6pt]
+
对于许多传染病,有一段很长的疾病潜伏期,在此期间个人已经被感染,但他们自己还没有感病。在此期间,这个人是属于类别E(暴露者类型)
   −
& \frac{\beta}{\gamma} \le 1 \Rightarrow \lim_{t \to +\infty}I(t)=0, \\[6pt]
     −
& \frac{\beta}{\gamma} > 1 \Rightarrow \lim_{t \to +\infty}I(t) = \left(1 - \frac{\gamma}{\beta} \right) N.
     −
& \frac{\beta}{\gamma} > 1 \Rightarrow \lim_{t \to +\infty}I(t) = \left(1 - \frac{\gamma}{\beta} \right) N.
+
[[File:SEIR.PNG|800px|center|SEIR compartmental model]]
   −
& \frac{\beta}{\gamma} > 1 \Rightarrow \lim_{t \to +\infty}I(t) = \left(1 - \frac{\gamma}{\beta} \right) N.
+
SEIR compartmental model
   −
\end{align}
+
【图10:SEIR compartmental modelSEIR传染病模型】
   −
\end{align}
     −
\结束{ align }
     −
</math>
+
Assuming that the incubation period is a random variable with exponential distribution with parameter <math>a</math> (i.e. the average incubation period is <math>a^{-1}</math>), and also assuming the presence of vital dynamics with birth rate <math>\Lambda</math> equal to death rate <math>\mu</math>, we have the model:
   −
</math>
+
Assuming that the incubation period is a random variable with exponential distribution with parameter <math>a</math> (i.e. the average incubation period is <math>a^{-1}</math>), and also assuming the presence of vital dynamics with birth rate <math>\Lambda</math> equal to death rate <math>\mu</math>, we have the model:
   −
</math>
+
假设疾病潜伏期是一个随机变量,这个随机变量服从一个带有参数<math>''a''</math>的指数分布。(疾病平均潜伏期是<math>a^{-1}</math>),并且假设存在出生率<math>\Lambda</math>等于死亡率<math>\mu</math>的生命动力学,我们有这样的模型:
         −
It is possible to find an analytical solution to this model (by making a transformation of variables: <math>I = y^{-1}</math> and substituting this into the mean-field equations),<ref name=Hethcote1989>{{cite book |last=Hethcote |first=Herbert W. |chapter=Three Basic Epidemiological Models |title=Applied Mathematical Ecology |editor1-last=Levin |editor1-first=Simon A. |editor2-last=Hallam |editor2-first=Thomas G. |editor3-last=Gross |editor3-first=Louis J. |series=Biomathematics |volume=18 |publisher=Springer |location=Berlin |year=1989 |pages=119–144 |isbn=3-540-19465-7 |doi=10.1007/978-3-642-61317-3_5 }}</ref> such that the basic reproduction rate is greater than unity. The solution is given as
+
:<math>
 +
\begin{align}
 +
\frac{dS}{dt} & = \Lambda - \mu S - \frac{\beta I S}{N} \\[8pt]
 +
\frac{dE}{dt} & = \frac{\beta I S}{N} - (\mu +a ) E \\[8pt]
 +
\frac{dI}{dt} & = a E - (\gamma +\mu ) I \\[8pt]
 +
\frac{dR}{dt} & = \gamma I  - \mu R.
 +
\end{align}
 +
</math>
   −
It is possible to find an analytical solution to this model (by making a transformation of variables: <math>I = y^{-1}</math> and substituting this into the mean-field equations), such that the basic reproduction rate is greater than unity. The solution is given as
     −
这个模型可以找到一个'''<font color="#ff8000">解析解analytical solution</font>'''(通过对变量进行变换:<math>I = y^{-1}</math> 并将其代入'''<font color="#ff8000">平均场方程the mean-field euations</font>''') ,使基本再生率大于单位数。给出了解决方案如下:
         +
We have <math>S+E+I+R=N,</math> but this is only constant because of the (degenerate) assumption that birth and death rates are equal; in general <math>N</math> is a variable.
   −
:<math>I(t) = \frac{I_\infty}{1+V e^{-\chi t}}</math>.
+
We have <math>S+E+I+R=N,</math> but this is only constant because of the (degenerate) assumption that birth and death rates are equal; in general <math>N</math> is a variable.
   −
<math>I(t) = \frac{I_\infty}{1+V e^{-\chi t}}</math>.
+
我们有<math>S+E+I+R=N,</math>,但是这是常量,因为(退化的)假设出生率和死亡率是相等的; 一般来说<math>N</math>是一个变量。
   −
<math>I(t) = \frac{I_\infty}{1+V e^{-\chi t}}</math>.
        −
where <math>I_\infty = (1 -\gamma/\beta)N</math> is the endemic infectious population, <math>\chi = \beta-\gamma</math>, and <math>V = I_\infty/I_0 - 1</math>. As the system is assumed to be closed, the susceptible population is then <math>S(t) = N - I(t)</math>.
+
For this model, the basic reproduction number is:
   −
where <math>I_\infty = (1 -\gamma/\beta)N</math> is the endemic infectious population, <math>\chi = \beta-\gamma</math>, and <math>V = I_\infty/I_0 - 1</math>. As the system is assumed to be closed, the susceptible population is then <math>S(t) = N - I(t)</math>.
+
For this model, the basic reproduction number is:
   −
其中 <math>I_\infty = (1 -\gamma/\beta)N</math>是地方性传染病人口,<math>\chi = \beta-\gamma</math>,和 <math>V = I_\infty/I_0 - 1</math>。假设系统是封闭的,那么易感者是<math>S(t) = N - I(t)</math>
+
对于这种模式,'''<font color="#ff8000">基本再生数basic reproduction number</font>'''是:
         −
As a special case, one obtains the usual logistic function by assuming <math>\gamma=0</math>. This can be also considered in the SIR model with <math>R=0</math>, i.e. no removal will take place. That is the ''SI model''.<ref>[http://math.colgate.edu/~wweckesser/math312Spring06/handouts/IMM_SI_Model.pdf (p. 19) The SI Model]</ref> The differential equation system using <math>S=N-I</math> thus reduces to:
+
:<math>R_0 = \frac{a}{\mu+a}\frac{\beta}{\mu+\gamma}.</math>
   −
As a special case, one obtains the usual logistic function by assuming <math>\gamma=0</math>. This can be also considered in the SIR model with <math>R=0</math>, i.e. no removal will take place. That is the SI model. The differential equation system using <math>S=N-I</math> thus reduces to:
     −
作为一个特例,人们通过假设<math>R=0</math>得到通常的 Logistic函数。这也可以在 SIR 模型中考虑,该模型具有<math>R=0</math>,即没有康复者。这就是SI模型。微分方程系统使用<math>S=N-I</math>因此可以简化为:
      +
Similarly to the SIR model, also, in this case, we have a Disease-Free-Equilibrium (''N'',0,0,0) and an Endemic Equilibrium EE, and one can show that, independently from biologically meaningful initial conditions
    +
Similarly to the SIR model, also, in this case, we have a Disease-Free-Equilibrium (N,0,0,0) and an Endemic Equilibrium EE, and one can show that, independently from biologically meaningful initial conditions
   −
:<math>
+
类似于 SIR 模型,在这种情况下,我们有一个无病平衡(N,0,0,0)和一个地方病平衡 EE,可以证明,这独立于生物学意义上的初始条件
   −
<math>
     −
<math>
     −
\frac{dI}{dt}  \propto  I\cdot (N-I).
+
:<math> \left(S(0),E(0),I(0),R(0)\right) \in \left\{(S,E,I,R)\in [0,N]^4 : S \ge 0, E \ge 0, I\ge 0, R\ge 0, S+E+I+R = N \right\}  </math>
   −
\frac{dI}{dt}  \propto  I\cdot (N-I).
     −
\frac{dI}{dt}  \propto  I\cdot (N-I).
     −
</math>
+
it holds that:
   −
</math>
+
it holds that:
   −
</math>
+
它认为:
         −
In the long run, in this model, all individuals will become infected.
+
:<math> R_0 \le 1 \Rightarrow \lim_{t \to +\infty} \left(S(t),E(t),I(t),R(t)\right) = DFE = (N,0,0,0),</math>
   −
In the long run, in this model, all individuals will become infected.
     −
从长远来看,在这种模式下,所有的个体都会被感染。
+
:<math> R_0 > 1 , I(0)> 0 \Rightarrow \lim_{t \to +\infty} \left(S(t),E(t),I(t),R(t)\right) = EE. </math>
         −
===The SIRD model===
     −
SIRD模型
+
In case of periodically varying contact rate <math>\beta(t)</math> the condition for the global attractiveness of DFE is that the following linear system with periodic coefficients:
   −
[[File:SIRD.svg|thumb|Diagram of the SIRD model with initial values <math>S(0)=997, I(0)=3, R(0)=0</math> and the rates for infection <math>\beta=0.4</math>, recovery <math>\gamma=0.035</math> and mortality <math>\mu=0.005</math>]]
+
In case of periodically varying contact rate <math>\beta(t)</math> the condition for the global attractiveness of DFE is that the following linear system with periodic coefficients:
   −
Diagram of the SIRD model with initial values <math>S(0)=997, I(0)=3, R(0)=0</math> and the rates for infection <math>\beta=0.4</math>, recovery <math>\gamma=0.035</math> and mortality <math>\mu=0.005</math>
+
当接触率 < math > beta (t) </math >周期性变化时, DFE 全局吸引性的条件是,以下线性系统具有周期系数:
   −
【图6:Diagram of the SIRD model with initial values <math>S(0)=997, I(0)=3, R(0)=0</math> and the rates for infection <math>\beta=0.4</math>, recovery <math>\gamma=0.035</math> and mortality <math>\mu=0.005</math>SIRD模型示意图,初始值<math>S(0)=997,I(0)=3, R(0)=0</math>,感染率<math>\beta=0.4</math>,康复率<math>\gamma=0.035</math>,死亡率 <math>\mu=0.005</math>】
     −
[[File:SIRD model anim.gif|thumb|Animation of the SIRD model with initial values <math display="inline">S(0)=997, I(0)=3, R(0)=0</math>, initial rate for infection <math display="inline">\beta=0.5</math> and constant rates for recovery <math display="inline">\gamma=0.035</math> and mortality <math display="inline">\mu=0.005</math>. If there is neither medicine nor vaccination available, it is only possible to reduce the infection rate (often referred to as „flattening the curve“) by appropriate measures (e.&nbsp;g. „social distancing“). This animation shows the impact of reducing the infection rate by 76&nbsp;% (from <math display="inline">\beta=0.5</math> down to <math display="inline">\beta=0.12</math>).]]
     −
Animation of the SIRD model with initial values <math display="inline">S(0)=997, I(0)=3, R(0)=0</math>, initial rate for infection <math display="inline">\beta=0.5</math> and constant rates for recovery <math display="inline">\gamma=0.035</math> and mortality <math display="inline">\mu=0.005</math>. If there is neither medicine nor vaccination available, it is only possible to reduce the infection rate (often referred to as „flattening the curve“) by appropriate measures (e.&nbsp;g. „social distancing“). This animation shows the impact of reducing the infection rate by 76&nbsp;% (from <math display="inline">\beta=0.5</math> down to <math display="inline">\beta=0.12</math>).
+
: <math>
 +
\begin{align}
 +
\frac{dE_1}{dt} & = \beta(t) I_1 - (\gamma +a ) E_1 \\[8pt]
 +
\frac{dI_1}{dt} & = a E_1 - (\gamma +\mu ) I_1
 +
\end{align}
 +
</math>
   −
【图7:Animation of the SIRD model with initial values <math display="inline">S(0)=997, I(0)=3, R(0)=0</math>, initial rate for infection <math display="inline">\beta=0.5</math> and constant rates for recovery <math display="inline">\gamma=0.035</math> and mortality <math display="inline">\mu=0.005</math>. If there is neither medicine nor vaccination available, it is only possible to reduce the infection rate (often referred to as „flattening the curve“) by appropriate measures (e.&nbsp;g. „social distancing“). This animation shows the impact of reducing the infection rate by 76&nbsp;% (from <math display="inline">\beta=0.5</math> down to <math display="inline">\beta=0.12</math>)SIRD模型动画,初始值<math display="inline">S(0)=997I(0)=3, R(0)=0</math>,初始感染率 <math display="inline">\beta=0.5</math>和恒定康复率 <math display="inline">\gamma=0.035</math> 和死亡率<math display="inline">\mu=0.005</math>。如果既没有药物也没有疫苗可用,只有通过适当的措施(例如“社会距离”)才有可能降低感染率(通常称为“平缓曲线”)。这个动画展示了降低感染率76% 的效果(从 <math display="inline">\beta=0.5</math>下降到<math display="inline">\beta=0.12</math>)。】
           −
The ''Susceptible-Infectious-Recovered-Deceased-Model'' differentiates between ''Recovered'' (meaning specifically individuals having survived the disease and now immune) and ''Deceased''.{{cn|date=June 2020}} This model uses the following system of differential equations:
+
is stable (i.e. it has its Floquet's eigenvalues inside the unit circle in the complex plane).
   −
The Susceptible-Infectious-Recovered-Deceased-Model differentiates between Recovered (meaning specifically individuals having survived the disease and now immune) and Deceased. This model uses the following system of differential equations:
+
is stable (i.e. it has its Floquet's eigenvalues inside the unit circle in the complex plane).
   −
易感-感病-康复-死亡-模型区分恢复(特别是指从疾病中存活下来并且现在免疫)和死亡。该模型使用了下列微分方程组:
+
是稳定的(它在复平面的单位圆内有它的 Floquet 特征值)
   −
:<math>
     −
<math>
     −
<math>
+
=== The SEIS model ===
   −
\begin{align}
+
SEIS模型
   −
\begin{align}
+
The SEIS model is like the SEIR model (above) except that no immunity is acquired at the end.
   −
\开始{ align }
+
The SEIS model is like the SEIR model (above) except that no immunity is acquired at the end.
   −
& \frac{dS}{dt} = - \frac{\beta I S}{N}, \\[6pt]
+
SEIS 模型类似于之前的 SEIR 模型,只是最终不会转化为免疫属性。
   −
& \frac{dS}{dt} = - \frac{\beta I S}{N}, \\[6pt]
     −
& \frac{dS}{dt} = - \frac{\beta I S}{N}, \\[6pt]
     −
& \frac{dI}{dt} = \frac{\beta I S}{N} - \gamma I - \mu I, \\[6pt]
+
:::<math>{\color{blue}{\mathcal{S} \to \mathcal{E} \to \mathcal{I} \to \mathcal{S}}}</math>
   −
& \frac{dI}{dt} = \frac{\beta I S}{N} - \gamma I - \mu I, \\[6pt]
     −
& frac { dI }{ dt } = frac { beta i s }{ n }-gamma i-mu i,[6 pt ]
+
In this model an infection does not leave any immunity thus individuals that have recovered return to being susceptible, moving back into the ''S''(''t'') compartment.  The following differential equations describe this model:
   −
& \frac{dR}{dt} = \gamma I, \\[6pt]
+
In this model an infection does not leave any immunity thus individuals that have recovered return to being susceptible, moving back into the S(t) compartment.  The following differential equations describe this model:
   −
& \frac{dR}{dt} = \gamma I, \\[6pt]
+
在这个模型中,感染不会留下任何免疫性,因此染病个体恢复到易感状态,移回 s (t)状态。下列微分方程描述了这一模型:
   −
& \frac{dR}{dt} = \gamma I, \\[6pt]
     −
& \frac{dD}{dt} = \mu I,
  −
  −
& \frac{dD}{dt} = \mu I,
  −
  −
1 = mu i,
      +
::<math>
 +
\begin{align}
 +
\frac{dS}{dT} & = \Lambda - \frac{\beta SI}{N} - \mu S + \gamma I \\[6pt]
 +
\frac{dE}{dT} & = \frac{\beta SI}{N} - (\epsilon + \mu)E \\[6pt]
 +
\frac{dI}{dT} & = \varepsilon E - (\gamma + \mu)I
 
\end{align}
 
\end{align}
 +
</math>
   −
\end{align}
     −
\结束{ align }
     −
</math>
     −
</math>
+
=== The MSEIR model ===
   −
</math>
+
MSEIR模型
   −
where <math>\beta, \gamma, \mu</math> are the rates of infection, recovery, and mortality, respectively.<ref>The first and second differential equations are transformed and brought to the same form as for the ''SIR model'' above.</ref>
+
For the case of a disease, with the factors of passive immunity, and a latency period there is the MSEIR model.
   −
where <math>\beta, \gamma, \mu</math> are the rates of infection, recovery, and mortality, respectively.
+
For the case of a disease, with the factors of passive immunity, and a latency period there is the MSEIR model.
   −
这里<math>\beta, \gamma, \mu</math>分别是感染率,康复率和死亡率。
+
考虑被动免疫和潜伏期的因素情况下的传染病,建立了 MSEIR 模型。
         −
===The MSIR model===
+
::<math> \color{blue}{\mathcal{M} \to \mathcal{S} \to \mathcal{E} \to \mathcal{I} \to \mathcal{R}} </math>
 +
::<math>
 +
\begin{align}
 +
\frac{dM}{dT} & = \Lambda - \delta M - \mu M \\[6pt]
 +
\frac{dS}{dT} & = \delta M - \frac{\beta SI}{N} - \mu S \\[6pt]
 +
\frac{dE}{dT} & = \frac{\beta SI}{N} - (\varepsilon + \mu)E \\[6pt]
 +
\frac{dI}{dT} & = \varepsilon E - (\gamma + \mu)I \\[6pt]
 +
\frac{dR}{dT} & = \gamma I - \mu R
 +
\end{align}
 +
</math>
   −
MSIR模型
     −
For many infections, including [[measles]], babies are not born into the susceptible compartment but are immune to the disease for the first few months of life due to protection from maternal antibodies (passed across the [[placenta]] and additionally through [[colostrum]]). This is called [[passive immunity]]. This added detail can be shown by including an M class (for maternally derived immunity) at the beginning of the model.
     −
For many infections, including measles, babies are not born into the susceptible compartment but are immune to the disease for the first few months of life due to protection from maternal antibodies (passed across the placenta and additionally through colostrum). This is called passive immunity. This added detail can be shown by including an M class (for maternally derived immunity) at the beginning of the model.
     −
对于包括麻疹在内的许多传染病,婴儿出生时并不易感染,但由于母体抗体的保护(通过胎盘和初乳传播) ,婴儿在出生后的头几个月对该疾病免疫。这叫做被动免疫。这个额外的细节可以通过在模型的开头加入一个M类(用于母系免疫)来显示。
+
=== The MSEIRS model ===
    +
MSEIRS模型
    +
An MSEIRS model is similar to the MSEIR, but the immunity in the R class would be temporary, so that individuals would regain their susceptibility when the temporary immunity ended.
   −
[[File:MSIR.PNG|800px|center|MSIR compartmental model]]To indicate this mathematically, an additional compartment is added, ''M''(''t'')''.'' This results in the following differential equations:
+
An MSEIRS model is similar to the MSEIR, but the immunity in the R class would be temporary, so that individuals would regain their susceptibility when the temporary immunity ended.
   −
MSIR compartmental modelTo indicate this mathematically, an additional compartment is added, M(t). This results in the following differential equations:
+
MSEIRS 模型与 MSEIR 模型相似,但 r 类型的免疫效果是暂时的,因此当临时免疫结束时,个体将恢复其易感性。
   −
【图8:MSIR compartmental modelTo indicate this mathematically, an additional compartment is added, M(t). This results in the following differential equations:MSIR 分隔模型为了从数学上表示这一点,增加了一个额外的分隔,M(t)。这导致了下列微分方程:】
         +
:::<math>{\color{blue}{\mathcal{M} \to \mathcal{S} \to \mathcal{E} \to \mathcal{I} \to \mathcal{R} \to \mathcal{S}}}</math>
   −
::<math>
     −
<math>
     −
<math>
     −
\begin{align}
+
===Variable contact rates===
   −
\begin{align}
+
可变接触率
   −
\开始{ align }
+
It is well known that the probability of getting a disease is not constant in time. As a pandemic progresses, reactions to the pandemic may change the contact rates which are assumed constant in the simpler models. Counter-measures such as masks, social distancing and lockdown will alter the contact rate in a way to reduce the speed of the pandemic.
   −
\frac{dM}{dT} & = \Lambda - \delta M - \mu M\\[8pt]
+
It is well known that the probability of getting a disease is not constant in time. As a pandemic progresses, reactions to the pandemic may change the contact rates which are assumed constant in the simpler models. Counter-measures such as masks, social distancing and lockdown will alter the contact rate in a way to reduce the speed of the pandemic.
   −
\frac{dM}{dT} & = \Lambda - \delta M - \mu M\\[8pt]
+
众所周知,患病的概率在时间上并不是一成不变的。随着大流行的发展,相关应对措施可能会改变接触率,而较简单模型中将接触率假定为恒定。口罩、社交距离和封锁等应对措施将改变接触率,从而降低大流行的速度。
   −
{ dM }{ dT } & = Lambda-delta m-mu m [8 pt ]
     −
\frac{dS}{dT} & = \delta M - \frac{\beta SI}{N} - \mu S\\[8pt]
     −
\frac{dS}{dT} & = \delta M - \frac{\beta SI}{N} - \mu S\\[8pt]
+
In addition, Some diseases are seasonal, such as the [[Coronavirus|common cold viruses]], which are more prevalent during winter.  With childhood diseases, such as measles, mumps, and rubella, there is a strong correlation with the school calendar, so that during the school holidays the probability of getting such a disease dramatically decreases. As a consequence, for many classes of diseases, one should consider a force of infection with periodically ('seasonal') varying contact rate
   −
Frac { dS }{ dT } & = delta m-frac { beta SI }{ n }-mu s [8 pt ]
+
In addition, Some diseases are seasonal, such as the common cold viruses, which are more prevalent during winter.  With childhood diseases, such as measles, mumps, and rubella, there is a strong correlation with the school calendar, so that during the school holidays the probability of getting such a disease dramatically decreases. As a consequence, for many classes of diseases, one should consider a force of infection with periodically ('seasonal') varying contact rate
   −
\frac{dI}{dT} & = \frac{\beta SI}{N} - \gamma I - \mu I\\[8pt]
+
此外,有些疾病是季节性的,例如普通感冒病毒,这些病毒在冬季更为普遍。儿童疾病,如麻疹、腮腺炎和风疹,与上学日期有很强的相关性,因此在学校假期内患这种疾病的可能性大大降低。因此,对于许多种类的疾病,人们应该考虑周期性(“季节性”)变化接触率的感染力
   −
\frac{dI}{dT} & = \frac{\beta SI}{N} - \gamma I - \mu I\\[8pt]
     −
Frac { dI }{ dT } & = frac { beta SI }{ n }-gamma i-mu i [8 pt ]
     −
\frac{dR}{dT} & = \gamma I - \mu R
+
:<math> F = \beta(t) \frac{I}{N} , \quad \beta(t+T)=\beta(t)</math>
   −
\frac{dR}{dT} & = \gamma I - \mu R
     −
\frac{dR}{dT} & = \gamma I - \mu R
     −
\end{align}
+
with period T equal to one year.
   −
\end{align}
+
with period T equal to one year.
   −
\结束{ align }
+
周期T等于一年。
   −
</math>
     −
</math>
     −
</math>
+
Thus, our model becomes
    +
Thus, our model becomes
    +
因此,我们的模型变成了
   −
===Carrier state===
     −
载体状态
     −
Some people who have had an infectious disease such as [[tuberculosis]] never completely recover and continue to [[asymptomatic carrier|carry]] the infection, whilst not suffering the disease themselves. They may then move back into the infectious compartment and suffer symptoms (as in tuberculosis) or they may continue to infect others in their carrier state, while not suffering symptoms. The most famous example of this is probably [[Mary Mallon]], who infected 22 people with [[typhoid fever]]. The carrier compartment is labelled C.
+
:<math>
 
+
\begin{align}
Some people who have had an infectious disease such as tuberculosis never completely recover and continue to carry the infection, whilst not suffering the disease themselves. They may then move back into the infectious compartment and suffer symptoms (as in tuberculosis) or they may continue to infect others in their carrier state, while not suffering symptoms. The most famous example of this is probably Mary Mallon, who infected 22 people with typhoid fever. The carrier compartment is labelled C.
+
\frac{dS}{dt} & = \mu N - \mu S - \beta(t) \frac{I}{N} S \\[8pt]
 +
\frac{dI}{dt} & = \beta(t) \frac{I}{N} S - (\gamma +\mu ) I
 +
\end{align}
 +
</math>
   −
一些患有肺结核等传染病的人永远不会完全康复,而是继续携带这种传染病,同时他们自己也不会患上这种疾病。然后他们可能回归到感病者并出现症状(如肺结核),或者他们可能继续以携带者的状态传染给其他人,而不出现症状。最著名的例子可能是玛丽·马伦,她将伤寒传染给了22个人。携带者被标记为C。
           −
[[File:SIR with carrier model.png|A simple modification of previous image by Viki Male to make the word "Carrier" plainly visible.]]
+
(the dynamics of recovered easily follows from <math>R=N-S-I</math>), i.e. a nonlinear set of differential equations with periodically varying parameters. It is well known that this class of dynamical systems may undergo very interesting and complex phenomena of  nonlinear parametric resonance. It is easy to see that if:
   −
A simple modification of previous image by Viki Male to make the word "Carrier" plainly visible.
+
(the dynamics of recovered easily follows from <math>R=N-S-I</math>), i.e. a nonlinear set of differential equations with periodically varying parameters. It is well known that this class of dynamical systems may undergo very interesting and complex phenomena of  nonlinear parametric resonance. It is easy to see that if:
   −
【图9:A simple modification of previous image by Viki Male to make the word "Carrier" plainly visible.对维基马累之前形象的一个简单修改使单词“携带者”清晰可见。】
+
(康复的动力学很容易从<math>R=N-S-I</math>得出),也就是具有周期变化参数的非线性微分方程组。众所周知,这类动力系统可能会出现非常有趣和复杂的非线性参数共振现象。显然,如果:
         −
===The SEIR model===
+
:<math>\frac 1 T \int_0^T \frac{\beta(t)}{\mu+\gamma} \, dt < 1 \Rightarrow \lim_{t \to +\infty} (S(t),I(t)) = DFE = (N,0), </math>
   −
SEIR模型
     −
For many important infections, there is a significant incubation period during which individuals have been infected but are not yet infectious themselves. During this period the individual is in compartment ''E'' (for exposed).
     −
For many important infections, there is a significant incubation period during which individuals have been infected but are not yet infectious themselves. During this period the individual is in compartment E (for exposed).
     −
对于许多重要的感染,有一个重要的疾病潜伏期,在这期间个人已经被感染,但他们自己还没有感病。在此期间,这个人是属于类别E(为暴露)。
+
whereas if the integral is greater than one the disease will not die out and there may be such resonances. For example, considering the periodically varying contact rate as the 'input' of the system one has that the output is a periodic function whose period is a multiple of the period of the input.
    +
whereas if the integral is greater than one the disease will not die out and there may be such resonances. For example, considering the periodically varying contact rate as the 'input' of the system one has that the output is a periodic function whose period is a multiple of the period of the input.
    +
然而,如果积分大于1,疾病就不会消失,可能会有这样的共振。例如,将周期性变化的接触率作为系统的输入,输出是一个周期函数,其周期是输入周期的倍数。
   −
[[File:SEIR.PNG|800px|center|SEIR compartmental model]]
+
This allowed to give a contribution to explain the poly-annual (typically biennial) epidemic outbreaks of some infectious diseases as interplay between the period of the contact rate oscillations and the pseudo-period of the damped oscillations near the endemic equilibrium. Remarkably, in some cases, the behavior may also be quasi-periodic or even chaotic.
   −
SEIR compartmental model
+
This allowed to give a contribution to explain the poly-annual (typically biennial) epidemic outbreaks of some infectious diseases as interplay between the period of the contact rate oscillations and the pseudo-period of the damped oscillations near the endemic equilibrium. Remarkably, in some cases, the behavior may also be quasi-periodic or even chaotic.
   −
【图10:SEIR compartmental modelSEIR传染病模型】
+
这就可以解释某些传染病的每年(常见为两年)流行病爆发,是由于接触率振荡周期和地方病平衡点附近阻尼振荡的伪周期之间的相互作用。值得注意的是,在某些情况下,这种行为也可能是准周期的,甚至是混沌的。
         −
Assuming that the incubation period is a random variable with exponential distribution with parameter <math>a</math> (i.e. the average incubation period is <math>a^{-1}</math>), and also assuming the presence of vital dynamics with birth rate <math>\Lambda</math> equal to death rate <math>\mu</math>, we have the model:
     −
Assuming that the incubation period is a random variable with exponential distribution with parameter <math>a</math> (i.e. the average incubation period is <math>a^{-1}</math>), and also assuming the presence of vital dynamics with birth rate <math>\Lambda</math> equal to death rate <math>\mu</math>, we have the model:
     −
假设疾病潜伏期是一个带有参数<math>''a''</math>,那么它就是一个服从指数分布的随机变量。平均疾病潜伏期是<math>a^{-1}</math>),并且假设存在出生率<math>\Lambda</math>等于死亡率<math>\mu</math>的生命动力学,我们有这样的模型:
         +
==Modelling vaccination==
   −
:<math>
+
疫苗接种模型
   −
<math>
+
The SIR model can be modified to model vaccination<ref>{{cite journal |last1=Gao |first1= Shujing|last2=Teng |first2= Zhidong|last3=Nieto |first3=Juan J. |last4=Torres |first4=Angela |date=2007 |title=Analysis of an SIR Epidemic Model with Pulse Vaccination and Distributed Time Delay |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217597/ |journal=Journal of Biomedicine and Biotechnology |volume=2007 |issue= |pages= |doi= |access-date=July 19, 2020}}
   −
<math>
+
The SIR model can be modified to model vaccination
   −
\begin{align}
+
SIR 模型可以经过修改,对疫苗接种进行建模
   −
\begin{align}
+
Typically these introduce an additional compartment to the SIR model, <math>V</math>, for vaccinated individuals. Below are some examples.
   −
\开始{ align }
+
Typically these introduce an additional compartment to the SIR model, <math>V</math>, for vaccinated individuals. Below are some examples.
   −
\frac{dS}{dt} & = \Lambda - \mu S - \frac{\beta I S}{N} \\[8pt]
+
通常,在SIR 模型中引入一个额外的类别, <math>V</math> 为免疫类型。下面是一些例子。
   −
\frac{dS}{dt} & = \Lambda - \mu S - \frac{\beta I S}{N} \\[8pt]
     −
{ dS }{ dt } & = Lambda-mu s-frac { beta i s }{ n }[8 pt ]
     −
\frac{dE}{dt} & = \frac{\beta I S}{N} - (\mu +a ) E \\[8pt]
+
===Vaccinating newborns===
   −
\frac{dE}{dt} & = \frac{\beta I S}{N} - (\mu +a ) E \\[8pt]
+
新生儿疫苗接种
   −
Frac { dE }{ dt } & = frac { beta i s }{ n }-(mu + a) e [8 pt ]
+
In presence of a communicable diseases, one of main tasks is that of eradicating it via  prevention measures and, if possible, via the establishment of a mass vaccination program. Consider a disease for which the newborn are vaccinated (with a vaccine giving lifelong immunity) at a rate <math>P \in (0,1)</math>:
   −
\frac{dI}{dt} & = a E - (\gamma +\mu ) I \\[8pt]
+
In presence of a communicable diseases, one of main tasks is that of eradicating it via  prevention measures and, if possible, via the establishment of a mass vaccination program. Consider a disease for which the newborn are vaccinated (with a vaccine giving lifelong immunity) at a rate <math>P \in (0,1)</math>:
   −
\frac{dI}{dt} & = a E - (\gamma +\mu ) I \\[8pt]
+
当出现传染病时,主要任务之一是通过预防措施消除传染病,或者如果可能的话,通过建立大规模疫苗接种计划消除传染病。假设一种新生儿疫苗(通过疫苗给予终身免疫力)接种率为 <math>P \in (0,1)</math>的疾病,:
   −
Frac { dI }{ dt } & = a e-(gamma + mu) i [8 pt ]
     −
\frac{dR}{dt} & = \gamma I  - \mu R.
     −
\frac{dR}{dt} & = \gamma I - \mu R.
+
:<math>
 +
\begin{align}
 +
\frac{dS}{dt} & = \nu N (1-P) - \mu S - \beta \frac{I}{N} S \\[8pt]
 +
\frac{dI}{dt} & = \beta \frac{I}{N} S - (\mu+\gammaI \\[8pt]
 +
\frac{dV}{dt} & = \nu N P - \mu V
 +
\end{align}
 +
</math>
   −
\frac{dR}{dt} & = \gamma I  - \mu R.
     −
\end{align}
     −
\end{align}
     −
结束{ align }
+
where <math>V</math> is the class of vaccinated subjects. It is immediate to show that:
   −
</math>
+
where <math>V</math> is the class of vaccinated subjects. It is immediate to show that:
   −
</math>
+
其中<math>V</math> 是指接种疫苗的人群。很快就可以看出:
   −
</math>
         +
:<math> \lim_{t \to +\infty} V(t)= N P,</math>
   −
We have <math>S+E+I+R=N,</math> but this is only constant because of the (degenerate) assumption that birth and death rates are equal; in general <math>N</math> is a variable.
     −
We have <math>S+E+I+R=N,</math> but this is only constant because of the (degenerate) assumption that birth and death rates are equal; in general <math>N</math> is a variable.
     −
我们有<math>S+E+I+R=N,</math>但是这只是常数,因为(退化的)假设出生率和死亡率是相等的; 一般来说<math>N</math>是一个变量。
      +
thus we shall deal with the long term behavior of <math>S</math> and <math>I</math>, for which it holds that:
    +
thus we shall deal with the long term behavior of <math>S</math> and <math>I</math>, for which it holds that:
   −
For this model, the basic reproduction number is:
+
因此,我们需要处理<math>S</math>和<math>I</math>的长期行为,它认为:
   −
For this model, the basic reproduction number is:
     −
对于这种模式,'''<font color="#ff8000">基本再生数basic reproduction number</font>'''是:
      +
:<math> R_0 (1-P) \le 1 \Rightarrow  \lim_{t \to +\infty} \left(S(t),I(t)\right) = DFE = \left(N \left(1-P\right),0\right) </math>
    +
:<math> R_0 (1-P) > 1 , \quad I(0)> 0 \Rightarrow  \lim_{t \to +\infty} \left(S(t),I(t)\right) = EE = \left(\frac{N}{R_0(1-P)},N \left(R_0 (1-P)-1\right)\right). </math>
   −
:<math>R_0 = \frac{a}{\mu+a}\frac{\beta}{\mu+\gamma}.</math>
     −
<math>R_0 = \frac{a}{\mu+a}\frac{\beta}{\mu+\gamma}.</math>
     −
<math>R_0 = \frac{a}{\mu+a}\frac{\beta}{\mu+\gamma}.</math>
+
In other words, if
    +
In other words, if
   −
Similarly to the SIR model, also, in this case, we have a Disease-Free-Equilibrium (''N'',0,0,0) and an Endemic Equilibrium EE, and one can show that, independently from biologically meaningful initial conditions
+
也就是说,如果
   −
Similarly to the SIR model, also, in this case, we have a Disease-Free-Equilibrium (N,0,0,0) and an Endemic Equilibrium EE, and one can show that, independently from biologically meaningful initial conditions
+
:<math> P < P^{*}= 1-\frac{1}{R_0}  </math>
   −
类似于 SIR 模型,在这种情况下,我们有一个无病平衡(N,0,0,0)和一个地方病平衡 EE,我们可以证明,独立于生物学上有意义的初始条件
      +
the vaccination program is not successful in eradicating the disease, on the contrary, it will remain endemic, although at lower levels than the case of absence of vaccinations. This means that the mathematical model suggests that for a disease whose [[basic reproduction number]] may be as high as 18 one should vaccinate at least 94.4% of newborns in order to eradicate the disease.
    +
the vaccination program is not successful in eradicating the disease, on the contrary, it will remain endemic, although at lower levels than the case of absence of vaccinations. This means that the mathematical model suggests that for a disease whose basic reproduction number may be as high as 18 one should vaccinate at least 94.4% of newborns in order to eradicate the disease.
   −
:<math> \left(S(0),E(0),I(0),R(0)\right) \in \left\{(S,E,I,R)\in [0,N]^4 : S \ge 0, E \ge 0, I\ge 0, R\ge 0, S+E+I+R = N \right\}  </math>
+
疫苗接种计划没有成功地根除这种疾病,相反,它将继续流行下去,尽管它的流行水平低于缺乏疫苗接种的情况。这意味着数学模型表明,对于基本再生数可能高达18的疾病,应该至少为94.4% 的新生儿接种疫苗,以根除这种疾病。
   −
<math> \left(S(0),E(0),I(0),R(0)\right) \in \left\{(S,E,I,R)\in [0,N]^4 : S \ge 0, E \ge 0, I\ge 0, R\ge 0, S+E+I+R = N \right\}  </math>
     −
<math> \左(S(0),E(0),I(0),R(0)\right) \in \left\{(S,E,I,R)\in [0,N]^4 : S \ge 0, E \ge 0, I\ge 0, R\ge 0, S+E+I+R = N \右\}  </math>
      +
===Vaccination and information===
   −
it holds that:
+
疫苗接种与信息
   −
it holds that:
+
Modern societies are facing the challenge of "rational" exemption, i.e. the family's decision to not vaccinate children as a consequence of a "rational" comparison between the perceived risk from infection and that from getting damages from the vaccine. In order to assess whether this behavior is really rational, i.e. if it can equally lead to the eradication of the disease,  one may simply assume that the vaccination rate is an increasing function of the number of infectious subjects:
   −
它认为:
+
Modern societies are facing the challenge of "rational" exemption, i.e. the family's decision to not vaccinate children as a consequence of a "rational" comparison between the perceived risk from infection and that from getting damages from the vaccine. In order to assess whether this behavior is really rational, i.e. if it can equally lead to the eradication of the disease,  one may simply assume that the vaccination rate is an increasing function of the number of infectious subjects:
    +
现代社会正面临着“理性”豁免的挑战,即家庭由于对感染风险的感知和对疫苗损害风险的“理性”比较,从而决定不给儿童接种疫苗。为了评估这种行为是否真的是理性的,也就是说,它是否同样能够根除疾病,人们可以简单地假定疫苗接种率是染病人群数量的递增函数:
    +
:<math> P=P(I), \quad P'(I)>0.</math>
   −
:<math> R_0 \le 1 \Rightarrow \lim_{t \to +\infty} \left(S(t),E(t),I(t),R(t)\right) = DFE = (N,0,0,0),</math>
     −
<math> R_0 \le 1 \Rightarrow \lim_{t \to +\infty} \left(S(t),E(t),I(t),R(t)\right) = DFE = (N,0,0,0),</math>
+
In such a case the eradication condition becomes:
 +
 
 +
In such a case the eradication condition becomes:
   −
左(s (t) ,e (t) ,i (t) ,r (t)右) = DFE = (n,0,0,0,0) ,</math >
+
在这种情况下,传染病根除的条件是:
   −
:<math> R_0 > 1 , I(0)> 0 \Rightarrow \lim_{t \to +\infty} \left(S(t),E(t),I(t),R(t)\right) = EE. </math>
+
:<math> P(0) \ge P^{*},</math>
   −
<math> R_0 > 1 , I(0)> 0 \Rightarrow \lim_{t \to +\infty} \left(S(t),E(t),I(t),R(t)\right) = EE. </math>
     −
<math> R_0 > 1 , I(0)> 0 \Rightarrow \lim_{t \to +\infty} \left(S(t),E(t),I(t),R(t)\right) = EE. </math>
+
i.e. the baseline vaccination rate should be greater than the "mandatory vaccination" threshold, which, in case of exemption, cannot hold. Thus, "rational" exemption might be myopic since it is based only on the current low incidence due to high vaccine coverage, instead taking into account future resurgence of infection due to coverage decline.
    +
i.e. the baseline vaccination rate should be greater than the "mandatory vaccination" threshold, which, in case of exemption, cannot hold. Thus, "rational" exemption might be myopic since it is based only on the current low incidence due to high vaccine coverage, instead taking into account future resurgence of infection due to coverage decline.
    +
也就是说疫苗接种率基线应高于“强制接种”的阈值,而在豁免情况下,该阈值不能持续。因此,“合理的”豁免可能是短视的,因为它只是基于目前由于疫苗覆盖率高而发病率低的情况,而没有考虑到由于覆盖率下降而导致的未来感染死灰复燃的情况。
   −
In case of periodically varying contact rate <math>\beta(t)</math> the condition for the global attractiveness of DFE is that the following linear system with periodic coefficients:
     −
In case of periodically varying contact rate <math>\beta(t)</math> the condition for the global attractiveness of DFE is that the following linear system with periodic coefficients:
     −
当周期性变化的接触率 < math > beta (t) </math > DFE 全局吸引性的条件是下列具有周期系数的线性系统:
+
===Vaccination of non-newborns===
    +
非新生儿疫苗接种
    +
In case there also are vaccinations of non newborns at a rate ρ the equation for the susceptible and vaccinated subject has to be modified as follows:
   −
: <math>
+
In case there also are vaccinations of non newborns at a rate ρ the equation for the susceptible and vaccinated subject has to be modified as follows:
   −
<math>
+
如果以接种率<math>ρ</math>为非新生儿接种疫苗,易感者和接种者的方程必须修改如下:
   −
<math>
     −
\begin{align}
      +
:<math>
 
\begin{align}
 
\begin{align}
 +
\frac{dS}{dt} & = \mu N (1-P) - \mu S - \rho S - \beta \frac{I}{N} S \\[8pt]
 +
\frac{dV}{dt} & = \mu N P + \rho S - \mu V
 +
\end{align}
 +
</math>
   −
开始{ align }
     −
\frac{dE_1}{dt} & = \beta(t) I_1 - (\gamma +a ) E_1 \\[8pt]
     −
\frac{dE_1}{dt} & = \beta(t) I_1 - (\gamma +a ) E_1 \\[8pt]
     −
Frac { dE _ 1}{ dt } & = beta (t) i _ 1-(gamma + a) e _ 1[8 pt ]
+
leading to the following eradication condition:
   −
\frac{dI_1}{dt} & = a E_1 - (\gamma +\mu ) I_1
+
leading to the following eradication condition:
   −
\frac{dI_1}{dt} & = a E_1 - (\gamma +\mu ) I_1
+
推导出以下的根除条件:
   −
压裂{ dI _ 1}{ dt } & = a e _ 1-(gamma + mu) i _ 1
     −
\end{align}
     −
\end{align}
+
:<math> P \ge 1- \left(1+\frac{\rho}{\mu}\right)\frac{1}{R_0} </math>
   −
结束{ align }
     −
</math>
     −
</math>
     −
</math>
+
===Pulse vaccination strategy===
    +
脉冲疫苗接种策略
    +
This strategy repeatedly vaccinates a defined age-cohort (such as young children or the elderly) in a susceptible population over time. Using this strategy, the block of susceptible individuals is then immediately removed, making it possible to eliminate an infectious disease, (such as measles), from the entire population. Every T time units a constant fraction p of susceptible subjects is vaccinated in a relatively short (with respect to the dynamics of the disease) time. This leads to the following impulsive differential equations for the susceptible and vaccinated subjects:
   −
is stable (i.e. it has its Floquet's eigenvalues inside the unit circle in the complex plane).
+
This strategy repeatedly vaccinates a defined age-cohort (such as young children or the elderly) in a susceptible population over time. Using this strategy, the block of susceptible individuals is then immediately removed, making it possible to eliminate an infectious disease, (such as measles), from the entire population. Every T time units a constant fraction p of susceptible subjects is vaccinated in a relatively short (with respect to the dynamics of the disease) time. This leads to the following impulsive differential equations for the susceptible and vaccinated subjects:
   −
is stable (i.e. it has its Floquet's eigenvalues inside the unit circle in the complex plane).
+
这一策略在一段时间内对易感人群中特定年龄群(如儿童或老年人)反复接种疫苗。利用这一策略,可立即消除易感人群,从而有可能从整个人群中消除传染病(如麻疹)。每<math>T</math>个时间单位,在相对较短的时间内(相对于疾病的动态),对一定比例<math> p </math>的易感受试者进行接种。这就得出了以下易感者和疫苗接种者的脉冲微分方程:
   −
是稳定的(它在复平面的单位圆内有它的 Floquet 特征值)。
         +
:<math>
 +
\begin{align}
 +
\frac{dS}{dt} & = \mu N  - \mu S - \beta \frac{I}{N} S, \quad S(n T^+) = (1-p) S(n T^-), & & n=0,1,2,\ldots \\[8pt]
 +
\frac{dV}{dt} & = - \mu V, \quad V(n T^+) = V(n T^-) + p S(n T^-), & & n=0,1,2,\ldots
 +
\end{align}
 +
</math>
   −
=== The SEIS model ===
     −
SEIS模型
     −
The SEIS model is like the SEIR model (above) except that no immunity is acquired at the end.
     −
The SEIS model is like the SEIR model (above) except that no immunity is acquired at the end.
+
It is easy to see that by setting {{math|1=''I'' = 0}} one obtains that the dynamics of the susceptible subjects is given by:
   −
SEIS 模型类似于 SEIR 模型(上图) ,只是最终没有获得免疫性。
+
It is easy to see that by setting  one obtains that the dynamics of the susceptible subjects is given by:
    +
很容易看出,通过设置{{math|1=''I'' = 0}},可以通过以下方式获得易感个体的动态:
      −
:::<math>{\color{blue}{\mathcal{S} \to \mathcal{E} \to \mathcal{I} \to \mathcal{S}}}</math>
     −
<math>{\color{blue}{\mathcal{S} \to \mathcal{E} \to \mathcal{I} \to \mathcal{S}}}</math>
+
:<math> S^*(t) = 1- \frac{p}{1-(1-p)E^{-\mu T}} E^{-\mu MOD(t,T)} </math>
   −
<math>{\color{blue}{\mathcal{S} \to \mathcal{E} \to \mathcal{I} \to \mathcal{S}}}</math>
        −
In this model an infection does not leave any immunity thus individuals that have recovered return to being susceptible, moving back into the ''S''(''t'') compartment.  The following differential equations describe this model:
     −
In this model an infection does not leave any immunity thus individuals that have recovered return to being susceptible, moving back into the S(t) compartment.  The following differential equations describe this model:
+
and that the eradication condition is:
   −
在这个模型中,感染不会留下任何免疫性,因此个体已经恢复到易感状态,移回 s (t)隔间。下列微分方程描述了这一模型:
+
and that the eradication condition is:
    +
而根除条件是:
      −
::<math>
     −
<math>
+
:<math> R_0 \int_0^T S^*(t) \, dt < 1  </math>
   −
<math>
        −
\begin{align}
     −
\begin{align}
+
==The influence of age: age-structured models==
   −
开始{ align }
+
年龄的影响:年龄结构模型
   −
\frac{dS}{dT} & = \Lambda - \frac{\beta SI}{N} - \mu S + \gamma I \\[6pt]
+
Age has a deep influence on the disease spread rate in a population, especially the contact rate. This rate summarizes the effectiveness of contacts between susceptible and infectious subjects. Taking into account the ages of the epidemic classes <math>s(t,a),i(t,a),r(t,a)</math> (to limit ourselves to the susceptible-infectious-removed scheme) such that:
   −
\frac{dS}{dT} & = \Lambda - \frac{\beta SI}{N} - \mu S + \gamma I \\[6pt]
+
Age has a deep influence on the disease spread rate in a population, especially the contact rate. This rate summarizes the effectiveness of contacts between susceptible and infectious subjects. Taking into account the ages of the epidemic classes <math>s(t,a),i(t,a),r(t,a)</math> (to limit ourselves to the susceptible-infectious-removed scheme) such that:
   −
Frac { dS }{ dT } & = Lambda-frac { beta SI }{ n }-mu s + gamma i [6 pt ]
+
年龄对疾病在人群中的传播速度有很大的影响,尤其是接触率。这个比率概括了易感人群和感染人群之间接触的有效性。考虑流行病不同类别人群的年龄<math>s(t,a),i(t,a),r(t,a)</math>(限制在易感者-染病者-康复者的模型中) ,这样:
   −
\frac{dE}{dT} & = \frac{\beta SI}{N} - (\epsilon + \mu)E \\[6pt]
     −
\frac{dE}{dT} & = \frac{\beta SI}{N} - (\epsilon + \mu)E \\[6pt]
     −
Frac { dE }{ dT } & = frac { beta SI }{ n }-(epsilon + mu) e [6 pt ]
+
:<math>S(t)=\int_0^{a_M} s(t,a)\,da </math>
   −
\frac{dI}{dT} & = \varepsilon E - (\gamma + \mu)I
     −
\frac{dI}{dT} & = \varepsilon E - (\gamma + \mu)I
     −
(γ + mu) i
+
:<math>I(t)=\int_0^{a_M} i(t,a)\,da</math>
   −
\end{align}
     −
\end{align}
     −
结束{ align }
+
:<math>R(t)=\int_0^{a_M} r(t,a)\,da</math>
   −
</math>
     −
</math>
     −
</math>
      +
(where <math>a_M \le +\infty</math> is the maximum admissible age) and their dynamics is not described, as one might think, by "simple" partial differential equations, but by [[integro-differential equation]]s:
    +
(where <math>a_M \le +\infty</math> is the maximum admissible age) and their dynamics is not described, as one might think, by "simple" partial differential equations, but by integro-differential equations:
   −
=== The MSEIR model ===
+
(其中<math>a_M \le +\infty</math> 是最大可接受的年龄) ,它们的动力学并不像人们想象的那样用“简单的”偏微分方程描述,而是用积分-微分方程描述:
   −
MSEIR模型
     −
For the case of a disease, with the factors of passive immunity, and a latency period there is the MSEIR model.
     −
For the case of a disease, with the factors of passive immunity, and a latency period there is the MSEIR model.
+
:<math>\partial_t s(t,a) + \partial_a s(t,a) = -\mu(a) s(a,t) - s(a,t)\int_0^{a_M} k(a,a_1;t)i(a_1,t)\,da_1 </math>
   −
以疾病为例,考虑被动免疫因素和潜伏期,建立了 MSEIR 模型。
      +
:<math>\partial_t i(t,a) + \partial_a i(t,a) =  s(a,t)\int_{0}^{a_M}{k(a,a_1;t)i(a_1,t)da_1}  -\mu(a) i(a,t) - \gamma(a)i(a,t)  </math>
      −
:::<math> \color{blue}{\mathcal{M} \to \mathcal{S} \to \mathcal{E} \to \mathcal{I} \to \mathcal{R}} </math>
     −
<math> \color{blue}{\mathcal{M} \to \mathcal{S} \to \mathcal{E} \to \mathcal{I} \to \mathcal{R}} </math>
     −
<math> \color{blue}{\mathcal{M} \to \mathcal{S} \to \mathcal{E} \to \mathcal{I} \to \mathcal{R}} </math>
+
:<math>\partial_t r(t,a) + \partial_a r(t,a) =  -\mu(a) r(a,t) + \gamma(a)i(a,t)  </math>
   −
::<math>
     −
<math>
+
where:
   −
<math>
+
where:
   −
\begin{align}
+
其中:
   −
\begin{align}
     −
开始{ align }
     −
\frac{dM}{dT} & = \Lambda - \delta M - \mu M \\[6pt]
+
:<math>F(a,t,i(\cdot,\cdot))=\int_0^{a_M} k(a,a_1;t)i(a_1,t) \, da_1 </math>
   −
\frac{dM}{dT} & = \Lambda - \delta M - \mu M \\[6pt]
     −
{ dM }{ dT } & = Lambda-delta m-mu m [6 pt ]
     −
\frac{dS}{dT} & = \delta M - \frac{\beta SI}{N} - \mu S \\[6pt]
     −
\frac{dS}{dT} & = \delta M - \frac{\beta SI}{N} - \mu S \\[6pt]
+
is the force of infection, which, of course, will depend, though the contact kernel <math> k(a,a_1;t) </math> on the interactions between the ages.
   −
压裂{ dS }{ dT } & = delta m-frac { beta SI }{ n }-mu s [6 pt ]
+
is the force of infection, which, of course, will depend, though the contact kernel <math> k(a,a_1;t) </math> on the interactions between the ages.
   −
\frac{dE}{dT} & = \frac{\beta SI}{N} - (\varepsilon + \mu)E \\[6pt]
+
是感染力,接触核心<math> k(a,a_1;t) </math>取决于年龄之间的相互作用。
   −
\frac{dE}{dT} & = \frac{\beta SI}{N} - (\varepsilon + \mu)E \\[6pt]
     −
Frac { dE }{ dT } & = frac { beta SI }{ n }-(varepsilon + mu) e [6 pt ]
     −
\frac{dI}{dT} & = \varepsilon E - (\gamma + \mu)I \\[6pt]
+
Complexity is added by the initial conditions for newborns (i.e. for a=0), that are straightforward for infectious and removed:
   −
\frac{dI}{dT} & = \varepsilon E - (\gamma + \mu)I \\[6pt]
+
Complexity is added by the initial conditions for newborns (i.e. for a=0), that are straightforward for infectious and removed:
   −
(γ + mu) i [6 pt ]
+
新生婴儿的初始条件(即对于<math> a = 0 </math>) ,可以直接用于传染和康复:
   −
\frac{dR}{dT} & = \gamma I - \mu R
     −
\frac{dR}{dT} & = \gamma I - \mu R
     −
\frac{dR}{dT} & = \gamma I - \mu R
+
:<math>i(t,0)=r(t,0)=0</math>
   −
\end{align}
     −
\end{align}
     −
\结束{ align }
     −
</math>
+
but that are nonlocal for the density of susceptible newborns:
   −
</math>
+
but that are nonlocal for the density of susceptible newborns:
    +
但对于易感新生儿的密度来说,这是非局部的:
         −
=== The MSEIRS model ===
+
:<math>s(t,0)= \int_0^{a_M} \left(\varphi_s(a) s(a,t)+\varphi_i(a) i(a,t)+\varphi_r(a) r(a,t)\right) \, da </math>
   −
MSEIRS模型
     −
An MSEIRS model is similar to the MSEIR, but the immunity in the R class would be temporary, so that individuals would regain their susceptibility when the temporary immunity ended.
     −
An MSEIRS model is similar to the MSEIR, but the immunity in the R class would be temporary, so that individuals would regain their susceptibility when the temporary immunity ended.
+
where <math>\varphi_j(a), j=s,i,r</math> are the fertilities of the adults.
 
  −
MSEIRS 模型与 MSEIR 模型相似,但 r 类的免疫是暂时的,因此当暂时免疫结束时,个体将恢复其易感性。
      +
where <math>\varphi_j(a), j=s,i,r</math> are the fertilities of the adults.
    +
其中,<math>\varphi_j(a), j=s,i,r</math>是成人的生育能力。
   −
:::<math>{\color{blue}{\mathcal{M} \to \mathcal{S} \to \mathcal{E} \to \mathcal{I} \to \mathcal{R} \to \mathcal{S}}}</math>
     −
<math>{\color{blue}{\mathcal{M} \to \mathcal{S} \to \mathcal{E} \to \mathcal{I} \to \mathcal{R} \to \mathcal{S}}}</math>
     −
<math>{\color{blue}{\mathcal{M} \to \mathcal{S} \to \mathcal{E} \to \mathcal{I} \to \mathcal{R} \to \mathcal{S}}}</math>
+
Moreover, defining now the density of the total population <math>n(t,a)=s(t,a)+i(t,a)+r(t,a)</math> one obtains:
    +
Moreover, defining now the density of the total population <math>n(t,a)=s(t,a)+i(t,a)+r(t,a)</math>  one obtains:
    +
此外,现在定义总人口的密度<math>n(t,a)=s(t,a)+i(t,a)+r(t,a)</math> ,得到:
   −
===Variable contact rates===
     −
多样化接触率
     −
It is well known that the probability of getting a disease is not constant in time. As a pandemic progresses, reactions to the pandemic may change the contact rates which are assumed constant in the simpler models. Counter-measures such as masks, social distancing and lockdown will alter the contact rate in a way to reduce the speed of the pandemic.
+
:<math>\partial_t n(t,a) + \partial_a n(t,a) = -\mu(a) n(a,t) </math>
 
  −
It is well known that the probability of getting a disease is not constant in time. As a pandemic progresses, reactions to the pandemic may change the contact rates which are assumed constant in the simpler models. Counter-measures such as masks, social distancing and lockdown will alter the contact rate in a way to reduce the speed of the pandemic.
     −
众所周知,患病的概率在时间上并不是一成不变的。随着大流行的发展,相关应对措施可能会改变接触率,而较简单模型中将接触率假定为恒定。口罩、社交距离和封锁等应对措施将改变接触率,从而降低大流行的速度。
           −
In addition, Some diseases are seasonal, such as the [[Coronavirus|common cold viruses]], which are more prevalent during winter.  With childhood diseases, such as measles, mumps, and rubella, there is a strong correlation with the school calendar, so that during the school holidays the probability of getting such a disease dramatically decreases. As a consequence, for many classes of diseases, one should consider a force of infection with periodically ('seasonal') varying contact rate
+
In the simplest case of equal fertilities in the three epidemic classes, we have that in order to have demographic equilibrium the following necessary and sufficient condition linking the fertility <math>\varphi(.)</math> with the mortality <math>\mu(a)</math> must hold:
 
  −
In addition, Some diseases are seasonal, such as the common cold viruses, which are more prevalent during winter.  With childhood diseases, such as measles, mumps, and rubella, there is a strong correlation with the school calendar, so that during the school holidays the probability of getting such a disease dramatically decreases. As a consequence, for many classes of diseases, one should consider a force of infection with periodically ('seasonal') varying contact rate
  −
 
  −
此外,有些疾病是季节性的,例如普通感冒病毒,这些病毒在冬季更为普遍。儿童疾病,如麻疹、腮腺炎和风疹,与上学日期有很强的相关性,因此在学校假期内患这种疾病的可能性大大降低。因此,对于许多种类的疾病,人们应该考虑周期性/“季节性”)变化接触率的感染力
  −
 
  −
 
  −
 
  −
:<math> F = \beta(t) \frac{I}{N} , \quad \beta(t+T)=\beta(t)</math>
  −
 
  −
<math> F = \beta(t) \frac{I}{N} , \quad \beta(t+T)=\beta(t)</math>
  −
 
  −
<math> F = \beta(t) \frac{I}{N} , \quad \beta(t+T)=\beta(t)</math>
  −
 
  −
 
  −
 
  −
with period T equal to one year.
  −
 
  −
with period T equal to one year.
  −
 
  −
周期T等于一年。
  −
 
  −
 
  −
 
  −
Thus, our model becomes
  −
 
  −
Thus, our model becomes
  −
 
  −
因此,我们的模型变成了
  −
 
  −
 
  −
 
  −
:<math>
  −
 
  −
<math>
  −
 
  −
<math>
  −
 
  −
\begin{align}
  −
 
  −
\begin{align}
  −
 
  −
\开始{ align }
  −
 
  −
\frac{dS}{dt} & = \mu N - \mu S - \beta(t) \frac{I}{N} S \\[8pt]
  −
 
  −
\frac{dS}{dt} & = \mu N - \mu S - \beta(t) \frac{I}{N} S \\[8pt]
  −
 
  −
Frac { dS }{ dt } & = mu n-mu s-beta (t) frac { i }{ n } s [8 pt ]
  −
 
  −
\frac{dI}{dt} & = \beta(t) \frac{I}{N} S - (\gamma +\mu ) I
  −
 
  −
\frac{dI}{dt} & = \beta(t) \frac{I}{N} S - (\gamma +\mu ) I
  −
 
  −
{ i }{ n } s-(gamma + mu) i
  −
 
  −
\end{align}
  −
 
  −
\end{align}
  −
 
  −
\结束{ align }
  −
 
  −
</math>
  −
 
  −
</math>
  −
 
  −
</math>
  −
 
  −
 
  −
 
  −
(the dynamics of recovered easily follows from <math>R=N-S-I</math>), i.e. a nonlinear set of differential equations with periodically varying parameters. It is well known that this class of dynamical systems may undergo very interesting and complex phenomena of  nonlinear parametric resonance. It is easy to see that if:
  −
 
  −
(the dynamics of recovered easily follows from <math>R=N-S-I</math>), i.e. a nonlinear set of differential equations with periodically varying parameters. It is well known that this class of dynamical systems may undergo very interesting and complex phenomena of  nonlinear parametric resonance. It is easy to see that if:
  −
 
  −
(康的动力学很容易遵循<math>R=N-S-I</math>),也就是具有周期变化参数的非线性微分方程组。众所周知,这类动力系统可能会经历非常有趣和复杂的非线性参数共振现象。显然,如果:
  −
 
  −
 
  −
 
  −
:<math>\frac 1 T \int_0^T \frac{\beta(t)}{\mu+\gamma} \, dt < 1 \Rightarrow \lim_{t \to +\infty} (S(t),I(t)) = DFE = (N,0), </math>
  −
 
  −
<math>\frac 1 T \int_0^T \frac{\beta(t)}{\mu+\gamma} \, dt < 1 \Rightarrow \lim_{t \to +\infty} (S(t),I(t)) = DFE = (N,0), </math>
  −
 
  −
< math > frac 1t int _ 0 ^ t frac { beta (t)}{ mu + gamma } ,dt < 1 right tarrow lim _ { t to + infty }(s (t) ,i (t)) = DFE = (n,0) ,</math >
  −
 
  −
 
  −
 
  −
whereas if the integral is greater than one the disease will not die out and there may be such resonances. For example, considering the periodically varying contact rate as the 'input' of the system one has that the output is a periodic function whose period is a multiple of the period of the input.
  −
 
  −
whereas if the integral is greater than one the disease will not die out and there may be such resonances. For example, considering the periodically varying contact rate as the 'input' of the system one has that the output is a periodic function whose period is a multiple of the period of the input.
  −
 
  −
反之,如果积分大于1,疾病就不会消失,可能会有这样的共振。例如,将周期性变化的接触率作为系统的输入,则输出是一个周期是输入周期的倍数的周期函数。
  −
 
  −
This allowed to give a contribution to explain the poly-annual (typically biennial) epidemic outbreaks of some infectious diseases as interplay between the period of the contact rate oscillations and the pseudo-period of the damped oscillations near the endemic equilibrium. Remarkably, in some cases, the behavior may also be quasi-periodic or even chaotic.
  −
 
  −
This allowed to give a contribution to explain the poly-annual (typically biennial) epidemic outbreaks of some infectious diseases as interplay between the period of the contact rate oscillations and the pseudo-period of the damped oscillations near the endemic equilibrium. Remarkably, in some cases, the behavior may also be quasi-periodic or even chaotic.
  −
 
  −
这就可以解释某些传染病的多年(常见为两年)流行病爆发,即接触率振荡周期和地方病平衡点附近阻尼振荡的伪周期之间的相互作用。值得注意的是,在某些情况下,这种行为也可能是准周期的,甚至是混沌的。
  −
 
  −
 
  −
 
  −
 
  −
 
  −
 
  −
 
  −
==Modelling vaccination==
  −
 
  −
疫苗接种模型
  −
 
  −
The SIR model can be modified to model vaccination<ref>{{cite journal |last1=Gao |first1= Shujing|last2=Teng |first2= Zhidong|last3=Nieto |first3=Juan J. |last4=Torres |first4=Angela |date=2007 |title=Analysis of an SIR Epidemic Model with Pulse Vaccination and Distributed Time Delay |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217597/ |journal=Journal of Biomedicine and Biotechnology |volume=2007 |issue= |pages= |doi= |access-date=July 19, 2020}}
  −
 
  −
The SIR model can be modified to model vaccination<ref>
  −
 
  −
SIR 模型可以修改为疫苗接种模型<ref>
  −
 
  −
</ref>. Typically these introduce an additional compartment to the SIR model, <math>V</math>, for vaccinated individuals. Below are some examples.
  −
 
  −
</ref>. Typically these introduce an additional compartment to the SIR model, <math>V</math>, for vaccinated individuals. Below are some examples.
  −
 
  −
</ref >.典型地,这些引入了一个额外的类别,SIR 模型, <math>V</math> ,为免疫个体。下面是一些例子。
  −
 
  −
 
  −
 
  −
===Vaccinating newborns===
  −
 
  −
新生儿疫苗接种
  −
 
  −
In presence of a communicable diseases, one of main tasks is that of eradicating it via  prevention measures and, if possible, via the establishment of a mass vaccination program. Consider a disease for which the newborn are vaccinated (with a vaccine giving lifelong immunity) at a rate <math>P \in (0,1)</math>:
  −
 
  −
In presence of a communicable diseases, one of main tasks is that of eradicating it via  prevention measures and, if possible, via the establishment of a mass vaccination program. Consider a disease for which the newborn are vaccinated (with a vaccine giving lifelong immunity) at a rate <math>P \in (0,1)</math>:
  −
 
  −
面对传染病,主要任务之一是通过预防措施消除传染病,如果可能的话,通过建立大规模疫苗接种计划。假设一种新生儿接种疫苗(通过疫苗给予终身免疫力)的疾病,其发病率为 <math>P \in (0,1)</math>:
  −
 
  −
 
  −
 
  −
:<math>
  −
 
  −
<math>
  −
 
  −
<math>
  −
 
  −
\begin{align}
  −
 
  −
\begin{align}
  −
 
  −
开始{ align }
  −
 
  −
\frac{dS}{dt} & = \nu N (1-P) - \mu S - \beta \frac{I}{N} S \\[8pt]
  −
 
  −
\frac{dS}{dt} & = \nu N (1-P) - \mu S - \beta \frac{I}{N} S \\[8pt]
  −
 
  −
\frac{dS}{dt} & = \nu N (1-P) - \mu S - \beta \frac{I}{N} S \\[8pt]
  −
 
  −
\frac{dI}{dt} & = \beta \frac{I}{N} S - (\mu+\gamma)  I \\[8pt]
  −
 
  −
\frac{dI}{dt} & = \beta \frac{I}{N} S - (\mu+\gamma)  I \\[8pt]
  −
 
  −
Frac { dI }{ dt } & = beta frac { i }{ n } s-(mu + gamma) i [8 pt ]
  −
 
  −
\frac{dV}{dt} & = \nu N P - \mu V
  −
 
  −
\frac{dV}{dt} & = \nu N P - \mu V
  −
 
  −
\frac{dV}{dt} & = \nu N P - \mu V
  −
 
  −
\end{align}
  −
 
  −
\end{align}
  −
 
  −
\结束{ align }
  −
 
  −
</math>
  −
 
  −
</math>
  −
 
  −
</math>
  −
 
  −
 
  −
 
  −
where <math>V</math> is the class of vaccinated subjects. It is immediate to show that:
  −
 
  −
where <math>V</math> is the class of vaccinated subjects. It is immediate to show that:
  −
 
  −
其中<math>V</math> 是指接种疫苗的人群。很快就可以看出:
  −
 
  −
 
  −
 
  −
:<math> \lim_{t \to +\infty} V(t)= N P,</math>
  −
 
  −
<math> \lim_{t \to +\infty} V(t)= N P,</math>
  −
 
  −
< math > lim _ { t to + infty } v (t) = np,</math >
  −
 
  −
 
  −
 
  −
thus we shall deal with the long term behavior of <math>S</math> and <math>I</math>, for which it holds that:
  −
 
  −
thus we shall deal with the long term behavior of <math>S</math> and <math>I</math>, for which it holds that:
  −
 
  −
因此,我们将处理<math>S</math>和<math>I</math>的长期行为,它认为:
  −
 
  −
 
  −
 
  −
:<math> R_0 (1-P) \le 1 \Rightarrow  \lim_{t \to +\infty} \left(S(t),I(t)\right) = DFE = \left(N \left(1-P\right),0\right) </math>
  −
 
  −
<math> R_0 (1-P) \le 1 \Rightarrow  \lim_{t \to +\infty} \left(S(t),I(t)\right) = DFE = \left(N \left(1-P\right),0\right) </math>
  −
 
  −
<math> R_0 (1-P) \le 1 \Rightarrow  \lim_{t \to +\infty} \left(S(t),I(t)\right) = DFE = \left(N \left(1-P\right),0\right) </math>
  −
 
  −
 
  −
 
  −
:<math> R_0 (1-P) > 1 , \quad I(0)> 0 \Rightarrow  \lim_{t \to +\infty} \left(S(t),I(t)\right) = EE = \left(\frac{N}{R_0(1-P)},N \left(R_0 (1-P)-1\right)\right). </math>
  −
 
  −
<math> R_0 (1-P) > 1 , \quad I(0)> 0 \Rightarrow  \lim_{t \to +\infty} \left(S(t),I(t)\right) = EE = \left(\frac{N}{R_0(1-P)},N \left(R_0 (1-P)-1\right)\right). </math>
  −
 
  −
< math > r0(1-P) > 1,quad i (0) > 0 right tarrow lim _ t to + infty }左(s (t) ,i (t)右) = EE = 左(frac { n }{ r0(1-P)} ,n 左(r0(1-P)-1右)。数学
  −
 
  −
 
  −
 
  −
In other words, if
  −
 
  −
In other words, if
  −
 
  −
也就是说,如果
  −
 
  −
:<math> P < P^{*}= 1-\frac{1}{R_0}  </math>
  −
 
  −
<math> P < P^{*}= 1-\frac{1}{R_0}  </math>
  −
 
  −
1-frac {1}{ r _ 0} </math >
  −
 
  −
the vaccination program is not successful in eradicating the disease, on the contrary, it will remain endemic, although at lower levels than the case of absence of vaccinations. This means that the mathematical model suggests that for a disease whose [[basic reproduction number]] may be as high as 18 one should vaccinate at least 94.4% of newborns in order to eradicate the disease.
  −
 
  −
the vaccination program is not successful in eradicating the disease, on the contrary, it will remain endemic, although at lower levels than the case of absence of vaccinations. This means that the mathematical model suggests that for a disease whose basic reproduction number may be as high as 18 one should vaccinate at least 94.4% of newborns in order to eradicate the disease.
  −
 
  −
疫苗接种计划在根除这种疾病方面并不成功,相反,它将继续流行下去,尽管它的水平低于缺乏疫苗接种的情况。这意味着数学模型表明,对于基本传染数可能高达18的疾病,应该至少为94.4% 的新生儿接种疫苗,以根除这种疾病。
  −
 
  −
 
  −
 
  −
===Vaccination and information===
  −
 
  −
疫苗接种与信息
  −
 
  −
Modern societies are facing the challenge of "rational" exemption, i.e. the family's decision to not vaccinate children as a consequence of a "rational" comparison between the perceived risk from infection and that from getting damages from the vaccine. In order to assess whether this behavior is really rational, i.e. if it can equally lead to the eradication of the disease,  one may simply assume that the vaccination rate is an increasing function of the number of infectious subjects:
  −
 
  −
Modern societies are facing the challenge of "rational" exemption, i.e. the family's decision to not vaccinate children as a consequence of a "rational" comparison between the perceived risk from infection and that from getting damages from the vaccine. In order to assess whether this behavior is really rational, i.e. if it can equally lead to the eradication of the disease,  one may simply assume that the vaccination rate is an increasing function of the number of infectious subjects:
  −
 
  −
现代社会正面临着“理性”豁免的挑战,这个家庭决定不给孩子接种疫苗,是因为对感染的可感知风险和接种疫苗造成的损害进行了“合理”的比较。为了评估这种行为是否真的是理性的,即:如果它同样可以导致根除该疾病,人们可以简单地假定疫苗接种率是传染病人数的增加函数:
  −
 
  −
:<math> P=P(I), \quad P'(I)>0.</math>
  −
 
  −
<math> P=P(I), \quad P'(I)>0.</math>
  −
 
  −
P = p (i) ,p’(i) > 0
  −
 
  −
In such a case the eradication condition becomes:
  −
 
  −
In such a case the eradication condition becomes:
  −
 
  −
在这种情况下,根除条件是:
  −
 
  −
:<math> P(0) \ge P^{*},</math>
  −
 
  −
<math> P(0) \ge P^{*},</math>
  −
 
  −
<math> P(0) \ge P^{*},</math>
  −
 
  −
i.e. the baseline vaccination rate should be greater than the "mandatory vaccination" threshold, which, in case of exemption, cannot hold. Thus, "rational" exemption might be myopic since it is based only on the current low incidence due to high vaccine coverage, instead taking into account future resurgence of infection due to coverage decline.
  −
 
  −
i.e. the baseline vaccination rate should be greater than the "mandatory vaccination" threshold, which, in case of exemption, cannot hold. Thus, "rational" exemption might be myopic since it is based only on the current low incidence due to high vaccine coverage, instead taking into account future resurgence of infection due to coverage decline.
  −
 
  −
也就是说基线疫苗接种率应高于“强制接种”的门槛,而在豁免情况下,“强制接种”不能持续。因此,“合理的”豁免可能是短视的,因为它只是基于目前由于疫苗覆盖率高而发病率低的情况,而不是考虑到由于覆盖率下降而导致的未来感染死灰复燃的情况。
  −
 
  −
 
  −
 
  −
===Vaccination of non-newborns===
  −
 
  −
非新生儿疫苗接种
  −
 
  −
In case there also are vaccinations of non newborns at a rate ρ the equation for the susceptible and vaccinated subject has to be modified as follows:
  −
 
  −
In case there also are vaccinations of non newborns at a rate ρ the equation for the susceptible and vaccinated subject has to be modified as follows:
  −
 
  −
如果还有非新生儿的疫苗接种率,易感者和接种者的等式必须修改如下:
  −
 
  −
 
  −
 
  −
:<math>
  −
 
  −
<math>
  −
 
  −
<math>
  −
 
  −
\begin{align}
  −
 
  −
\begin{align}
  −
 
  −
开始{ align }
  −
 
  −
\frac{dS}{dt} & = \mu N (1-P) - \mu S - \rho S - \beta \frac{I}{N} S \\[8pt]
  −
 
  −
\frac{dS}{dt} & = \mu N (1-P) - \mu S - \rho S - \beta \frac{I}{N} S \\[8pt]
  −
 
  −
Frc { dS }{ dt } & = mu n (1-P)-mu s-rho s-beta frc { i }{ n } s [8 pt ]
  −
 
  −
\frac{dV}{dt} & = \mu N P + \rho S - \mu V
  −
 
  −
\frac{dV}{dt} & = \mu N P + \rho S - \mu V
  −
 
  −
\frac{dV}{dt} & = \mu N P + \rho S - \mu V
  −
 
  −
\end{align}
  −
 
  −
\end{align}
  −
 
  −
结束{ align }
  −
 
  −
</math>
  −
 
  −
</math>
  −
 
  −
</math>
  −
 
  −
 
  −
 
  −
leading to the following eradication condition:
  −
 
  −
leading to the following eradication condition:
  −
 
  −
导致以下的根除条件:
  −
 
  −
 
  −
 
  −
:<math> P \ge 1- \left(1+\frac{\rho}{\mu}\right)\frac{1}{R_0}  </math>
  −
 
  −
<math> P \ge 1- \left(1+\frac{\rho}{\mu}\right)\frac{1}{R_0}  </math>
  −
 
  −
<math> P \ge 1- \left(1+\frac{\rho}{\mu}\right)\frac{1}{R_0}  </math>
  −
 
  −
 
  −
 
  −
===Pulse vaccination strategy===
  −
 
  −
脉冲接种疫苗策略
  −
 
  −
This strategy repeatedly vaccinates a defined age-cohort (such as young children or the elderly) in a susceptible population over time. Using this strategy, the block of susceptible individuals is then immediately removed, making it possible to eliminate an infectious disease, (such as measles), from the entire population. Every T time units a constant fraction p of susceptible subjects is vaccinated in a relatively short (with respect to the dynamics of the disease) time. This leads to the following impulsive differential equations for the susceptible and vaccinated subjects:
  −
 
  −
This strategy repeatedly vaccinates a defined age-cohort (such as young children or the elderly) in a susceptible population over time. Using this strategy, the block of susceptible individuals is then immediately removed, making it possible to eliminate an infectious disease, (such as measles), from the entire population. Every T time units a constant fraction p of susceptible subjects is vaccinated in a relatively short (with respect to the dynamics of the disease) time. This leads to the following impulsive differential equations for the susceptible and vaccinated subjects:
  −
 
  −
随着时间的推移,这种策略反复对特定年龄组群(如幼儿或老年人)的易感人群进行疫苗接种。使用这种策略,易感者类别立即康复,从而有可能从整个人群中消灭传染病病毒(如麻疹)。每T时间单位一个常数分数p的易感受试者接种疫苗在一个相对较短的时间内(相对于疾病的动态)。这就导致了以下易受感染和接种疫苗的受试者的脉冲微分方程:
  −
 
  −
 
  −
 
  −
:<math>
  −
 
  −
<math>
  −
 
  −
<math>
  −
 
  −
\begin{align}
  −
 
  −
\begin{align}
  −
 
  −
开始{ align }
  −
 
  −
\frac{dS}{dt} & = \mu N  - \mu S - \beta \frac{I}{N} S, \quad S(n T^+) = (1-p) S(n T^-), & & n=0,1,2,\ldots \\[8pt]
  −
 
  −
\frac{dS}{dt} & = \mu N  - \mu S - \beta \frac{I}{N} S, \quad S(n T^+) = (1-p) S(n T^-), & & n=0,1,2,\ldots \\[8pt]
  −
 
  −
Frc { dS }{ dt } & = mu n-mu s-beta frc { i }{ n } s,方 s (n t ^ +) = (1-p) s (n t ^ -) ,& n = 0,1,2,ldots [8 pt ]
  −
 
  −
\frac{dV}{dt} & = - \mu V, \quad V(n T^+) = V(n T^-) + p S(n T^-), & & n=0,1,2,\ldots
  −
 
  −
\frac{dV}{dt} & = - \mu V, \quad V(n T^+) = V(n T^-) + p S(n T^-), & & n=0,1,2,\ldots
  −
 
  −
Frc { dV }{ dt } & =-mu v,quad v (n t ^ +) = v (n t ^ -) + p s (n t ^ -) ,& n = 0,1,2,ldots
  −
 
  −
\end{align}
  −
 
  −
\end{align}
  −
 
  −
结束{ align }
  −
 
  −
</math>
  −
 
  −
</math>
  −
 
  −
</math>
  −
 
  −
 
  −
 
  −
It is easy to see that by setting {{math|1=''I'' = 0}} one obtains that the dynamics of the susceptible subjects is given by:
  −
 
  −
It is easy to see that by setting  one obtains that the dynamics of the susceptible subjects is given by:
  −
 
  −
很容易看出,通过设置,人们得到的易感体动力学是由以下因素决定的:
  −
 
  −
 
  −
 
  −
:<math> S^*(t) = 1- \frac{p}{1-(1-p)E^{-\mu T}} E^{-\mu MOD(t,T)}  </math>
  −
 
  −
<math> S^*(t) = 1- \frac{p}{1-(1-p)E^{-\mu T}} E^{-\mu MOD(t,T)}  </math>
  −
 
  −
< math > s ^ * (t) = 1-frac { p }{1-(1-p) e ^ {-mu t } e ^ {-mu MOD (t,t)} </math >
  −
 
  −
 
  −
 
  −
and that the eradication condition is:
  −
 
  −
and that the eradication condition is:
  −
 
  −
而根除条件是:
  −
 
  −
 
  −
 
  −
:<math> R_0 \int_0^T S^*(t) \, dt < 1  </math>
  −
 
  −
<math> R_0 \int_0^T S^*(t) \, dt < 1  </math>
  −
 
  −
< math > r0 int _ 0 ^ t s ^ * (t) ,dt < 1 </math >
  −
 
  −
 
  −
 
  −
==The influence of age: age-structured models==
  −
 
  −
Age has a deep influence on the disease spread rate in a population, especially the contact rate. This rate summarizes the effectiveness of contacts between susceptible and infectious subjects. Taking into account the ages of the epidemic classes <math>s(t,a),i(t,a),r(t,a)</math> (to limit ourselves to the susceptible-infectious-removed scheme) such that:
  −
 
  −
Age has a deep influence on the disease spread rate in a population, especially the contact rate. This rate summarizes the effectiveness of contacts between susceptible and infectious subjects. Taking into account the ages of the epidemic classes <math>s(t,a),i(t,a),r(t,a)</math> (to limit ourselves to the susceptible-infectious-removed scheme) such that:
  −
 
  −
年龄对疾病在人群中的传播速度有很大的影响,尤其是接触率。这个比率概括了易感人群和感染人群之间接触的有效性。考虑到流行病的年龄<math>s(t,a),i(t,a),r(t,a)</math>(将我们限制在易感者-感病者-康复的计划) ,这样:
  −
 
  −
 
  −
 
  −
:<math>S(t)=\int_0^{a_M} s(t,a)\,da </math>
  −
 
  −
<math>S(t)=\int_0^{a_M} s(t,a)\,da </math>
  −
 
  −
<math>S(t)=\int_0^{a_M} s(t,a)\,da </math>
  −
 
  −
 
  −
:<math>I(t)=\int_0^{a_M} i(t,a)\,da</math>
  −
 
  −
<math>I(t)=\int_0^{a_M} i(t,a)\,da</math>
  −
 
  −
<math>I(t)=\int_0^{a_M} i(t,a)\,da</math>
  −
 
  −
 
  −
 
  −
:<math>R(t)=\int_0^{a_M} r(t,a)\,da</math>
  −
 
  −
<math>R(t)=\int_0^{a_M} r(t,a)\,da</math>
  −
 
  −
< math > r (t) = int _ 0 ^ { a _ m } r (t,a) ,da </math >
  −
 
  −
 
  −
 
  −
(where <math>a_M \le +\infty</math> is the maximum admissible age) and their dynamics is not described, as one might think, by "simple" partial differential equations, but by [[integro-differential equation]]s:
  −
 
  −
(where <math>a_M \le +\infty</math> is the maximum admissible age) and their dynamics is not described, as one might think, by "simple" partial differential equations, but by integro-differential equations:
  −
 
  −
(其中<math>a_M \le +\infty</math> 是最大可接受的年龄) ,它们的动力学并不像人们想象的那样用“简单的”偏微分方程描述,而是用积分-微分方程描述:
  −
 
  −
 
  −
 
  −
:<math>\partial_t s(t,a) + \partial_a s(t,a) = -\mu(a) s(a,t) - s(a,t)\int_0^{a_M} k(a,a_1;t)i(a_1,t)\,da_1 </math>
  −
 
  −
<math>\partial_t s(t,a) + \partial_a s(t,a) = -\mu(a) s(a,t) - s(a,t)\int_0^{a_M} k(a,a_1;t)i(a_1,t)\,da_1 </math>
  −
 
  −
< math > partial _ ts (t,a) + partial _ a s (t,a) =-mu (a,t) s (a,t)-s (a,t) int _ 0 ^ { a _ m } k (a,a _ 1; t) i (a _ 1,t) ,da _ 1 </math >
  −
 
  −
 
  −
 
  −
:<math>\partial_t i(t,a) + \partial_a i(t,a) =  s(a,t)\int_{0}^{a_M}{k(a,a_1;t)i(a_1,t)da_1}  -\mu(a) i(a,t) - \gamma(a)i(a,t)  </math>
  −
 
  −
<math>\partial_t i(t,a) + \partial_a i(t,a) =  s(a,t)\int_{0}^{a_M}{k(a,a_1;t)i(a_1,t)da_1}  -\mu(a) i(a,t) - \gamma(a)i(a,t)  </math>
  −
 
  −
< math > partial _ ti (t,a) + partial _ a i (t,a) = s (a,t) int _ {0} ^ { a _ m }{ k (a,a _ 1; t) i (a _ 1,t) da _ 1}-mu (a) i (a,t)-gamma (a) i (a,t) </math >
  −
 
  −
 
  −
 
  −
:<math>\partial_t r(t,a) + \partial_a r(t,a) =  -\mu(a) r(a,t) + \gamma(a)i(a,t)  </math>
  −
 
  −
<math>\partial_t r(t,a) + \partial_a r(t,a) =  -\mu(a) r(a,t) + \gamma(a)i(a,t)  </math>
  −
 
  −
< math > partial _ tr (t,a) + partial _ a r (t,a) =-mu (a) r (a,t) + gamma (a) i (a,t) </math >
  −
 
  −
 
  −
 
  −
where:
  −
 
  −
where:
  −
 
  −
其中:
  −
 
  −
 
  −
 
  −
:<math>F(a,t,i(\cdot,\cdot))=\int_0^{a_M} k(a,a_1;t)i(a_1,t) \, da_1 </math>
  −
 
  −
<math>F(a,t,i(\cdot,\cdot))=\int_0^{a_M} k(a,a_1;t)i(a_1,t) \, da_1 </math>
  −
 
  −
(a,t,i (cdot,cdot)) = int _ 0 ^ { a _ m } k (a,a _ 1; t) i (a _ 1,t) ,da _ 1 </math >
  −
 
  −
 
  −
 
  −
is the force of infection, which, of course, will depend, though the contact kernel <math> k(a,a_1;t) </math> on the interactions between the ages.
  −
 
  −
is the force of infection, which, of course, will depend, though the contact kernel <math> k(a,a_1;t) </math> on the interactions between the ages.
  −
 
  −
当然,虽然联系核心<math> k(a,a_1;t) </math>在于年龄之间的相互作用,但这将取决于感染力。
  −
 
  −
 
  −
 
  −
Complexity is added by the initial conditions for newborns (i.e. for a=0), that are straightforward for infectious and removed:
  −
 
  −
Complexity is added by the initial conditions for newborns (i.e. for a=0), that are straightforward for infectious and removed:
  −
 
  −
新生婴儿的初始条件(即对于 a = 0) ,可以直接用于传染和康复:
  −
 
  −
 
  −
 
  −
:<math>i(t,0)=r(t,0)=0</math>
  −
 
  −
<math>i(t,0)=r(t,0)=0</math>
  −
 
  −
<math>i(t,0)=r(t,0)=0</math>
  −
 
  −
 
  −
 
  −
but that are nonlocal for the density of susceptible newborns:
  −
 
  −
but that are nonlocal for the density of susceptible newborns:
  −
 
  −
但对于易感新生儿的密度来说,这是非本地的:
  −
 
  −
 
  −
 
  −
:<math>s(t,0)= \int_0^{a_M} \left(\varphi_s(a) s(a,t)+\varphi_i(a) i(a,t)+\varphi_r(a) r(a,t)\right) \, da </math>
  −
 
  −
<math>s(t,0)= \int_0^{a_M} \left(\varphi_s(a) s(a,t)+\varphi_i(a) i(a,t)+\varphi_r(a) r(a,t)\right) \, da </math>
  −
 
  −
< math > s (t,0) = int _ 0 ^ { a _ m } left (varphi _ s (a,t) + varphi _ i (a) i (a,t) + varphi _ r (a) r (a,t) right) ,da </math >
  −
 
  −
 
  −
 
  −
where <math>\varphi_j(a), j=s,i,r</math> are the fertilities of the adults.
  −
 
  −
where <math>\varphi_j(a), j=s,i,r</math> are the fertilities of the adults.
  −
 
  −
其中,<math>\varphi_j(a), j=s,i,r</math>是成人的受精能力。
  −
 
  −
 
  −
 
  −
Moreover, defining now the density of the total population <math>n(t,a)=s(t,a)+i(t,a)+r(t,a)</math>  one obtains:
  −
 
  −
Moreover, defining now the density of the total population <math>n(t,a)=s(t,a)+i(t,a)+r(t,a)</math>  one obtains:
  −
 
  −
此外,现在定义总人口的密度<math>n(t,a)=s(t,a)+i(t,a)+r(t,a)</math> 1得到:
  −
 
  −
 
  −
 
  −
:<math>\partial_t n(t,a) + \partial_a n(t,a) = -\mu(a) n(a,t) </math>
  −
 
  −
<math>\partial_t n(t,a) + \partial_a n(t,a) = -\mu(a) n(a,t) </math>
  −
 
  −
< math > partial _ tc (t,a) + partial _ a n (t,a) =-mu (a) n (a,t) </math >
  −
 
  −
 
      
In the simplest case of equal fertilities in the three epidemic classes, we have that in order to have demographic equilibrium the following necessary and sufficient condition linking the fertility <math>\varphi(.)</math> with the mortality <math>\mu(a)</math> must hold:
 
In the simplest case of equal fertilities in the three epidemic classes, we have that in order to have demographic equilibrium the following necessary and sufficient condition linking the fertility <math>\varphi(.)</math> with the mortality <math>\mu(a)</math> must hold:
   −
In the simplest case of equal fertilities in the three epidemic classes, we have that in order to have demographic equilibrium the following necessary and sufficient condition linking the fertility <math>\varphi(.)</math> with the mortality <math>\mu(a)</math> must hold:
+
在三个流行病类别中,最简单的相同生育情况下,为了实现人口均衡,我们需要以下充分必要条件,将生育率<math>\varphi(.)</math>与死亡率<math>\mu(a)</math>联系起来:
   −
在三个流行等级生育率相等的最简单情况下,我们得到了人口平衡与生育率相关的下列充要条件出生率<math>\varphi(.)和死亡率</math><math>\mu(a)</math>灵活性间的联系,必须坚持:
            
:<math> 1 = \int_0^{a_M} \varphi(a) \exp\left(- \int_0^a{\mu(q)dq} \right) \, da </math>
 
:<math> 1 = \int_0^{a_M} \varphi(a) \exp\left(- \int_0^a{\mu(q)dq} \right) \, da </math>
  −
<math> 1 = \int_0^{a_M} \varphi(a) \exp\left(- \int_0^a{\mu(q)dq} \right) \, da </math>
  −
  −
1 = int _ 0 ^ { a _ m } varphi (a) exp left (- int _ 0 ^ a { mu (q) dq } right) ,da </math >
        第2,120行: 第1,416行:  
and the demographic equilibrium is
 
and the demographic equilibrium is
   −
人口平衡是
+
人口均衡是
      第2,126行: 第1,422行:  
:<math>n^*(a)=C \exp\left(- \int_0^a \mu(q) \, dq \right),</math>
 
:<math>n^*(a)=C \exp\left(- \int_0^a \mu(q) \, dq \right),</math>
   −
<math>n^*(a)=C \exp\left(- \int_0^a \mu(q) \, dq \right),</math>
  −
  −
= c exp left (- int _ 0 ^ a mu (q) ,dq right) ,</math >
        第2,136行: 第1,429行:  
automatically ensuring the existence of the disease-free solution:
 
automatically ensuring the existence of the disease-free solution:
   −
自动确保无疾病解决方案的存在:
+
能够自动保证无疾病时解的存在:
      第2,142行: 第1,435行:  
:<math>DFS(a)= (n^*(a),0,0).</math>
 
:<math>DFS(a)= (n^*(a),0,0).</math>
   −
<math>DFS(a)= (n^*(a),0,0).</math>
  −
  −
<math>DFS(a)= (n^*(a),0,0).</math>
        第2,152行: 第1,442行:  
A basic reproduction number can be calculated as the spectral radius of an appropriate functional operator.
 
A basic reproduction number can be calculated as the spectral radius of an appropriate functional operator.
   −
基本再生数可以用一个适当的函数算符的谱半径来计算。
+
基本再生数可以通过求解适当的函数算子的谱半径来计算。
      第2,158行: 第1,448行:  
== Other considerations within compartmental epidemic models ==
 
== Other considerations within compartmental epidemic models ==
   −
其他传染病模型的考虑因素
+
分区传染病模型中的其他考虑事项
    
=== Vertical transmission ===
 
=== Vertical transmission ===
第2,168行: 第1,458行:  
In the case of some diseases such as AIDS and Hepatitis B, it is possible for the offspring of infected parents to be born infected.  This transmission of the disease down from the mother is called Vertical Transmission.  The influx of additional members into the infected category can be considered within the model by including a fraction of the newborn members in the infected compartment.
 
In the case of some diseases such as AIDS and Hepatitis B, it is possible for the offspring of infected parents to be born infected.  This transmission of the disease down from the mother is called Vertical Transmission.  The influx of additional members into the infected category can be considered within the model by including a fraction of the newborn members in the infected compartment.
   −
在艾滋病和乙型肝炎等一些疾病的情况下,受感染父母的后代有可能在出生时就受到感染。这种从母体向下传染的疾病叫做垂直传染。在模型中,可以通过将一部分新生儿成员包括在受感染的隔间中来考虑额外成员流入受感染类别的情况。
+
就艾滋病和乙型肝炎等疾病而言,受感染父母的子女有可能在出生时就受到感染。这种从母体向下传染的疾病叫做垂直传染。在模型中,通过将一部分新生成员包括在染病人群中,可以在模型中考虑其他成员涌入染病类别人群的情况。
      第2,180行: 第1,470行:  
Diseases transmitted from human to human indirectly, i.e. malaria spread by way of mosquitoes, are transmitted through a vector.  In these cases, the infection transfers from human to insect and an epidemic model must include both species, generally requiring many more compartments than a model for direct transmission.
 
Diseases transmitted from human to human indirectly, i.e. malaria spread by way of mosquitoes, are transmitted through a vector.  In these cases, the infection transfers from human to insect and an epidemic model must include both species, generally requiring many more compartments than a model for direct transmission.
   −
由人间接传播的疾病,即。疟疾通过蚊子传播,通过媒介传播。在这种情况下,从人到昆虫的感染转移和一个流行病模型必须包括这两个物种,通常需要更多的区域比模型直接传染。
+
人与人之间间接传播的疾病,如通过蚊子传播的疟疾,通过中间媒介传播。在这些情况下,传染病会从人传播到昆虫,并且传播模型必须包括这两种物种,通常比直接传播模型需要更多的类别区分。
      第2,195行: 第1,485行:     
*Non-homogeneous mixing
 
*Non-homogeneous mixing
 +
不同类型的疾病混合
    
*Variable infectivity
 
*Variable infectivity
 +
动态变化的传染率
    
*Distributions that are spatially non-uniform
 
*Distributions that are spatially non-uniform
 +
空间上的不均匀分布
    
*Diseases caused by macroparasites
 
*Diseases caused by macroparasites
 
+
由大型寄生虫引起的疾病
       
==Deterministic versus stochastic epidemic models==
 
==Deterministic versus stochastic epidemic models==
 
+
确定性和随机流行病模型
 
It is important to stress that the deterministic models presented here are valid only in case of sufficiently large populations, and as such should be used cautiously.<ref>{{cite journal |author=Bartlett MS |s2cid=91114210 |title=Measles periodicity and community size |journal=Journal of the Royal Statistical Society, Series A |volume=120 |pages=48–70 |year=1957 |doi=10.2307/2342553 |issue=1 |jstor=2342553}}</ref>
 
It is important to stress that the deterministic models presented here are valid only in case of sufficiently large populations, and as such should be used cautiously.<ref>{{cite journal |author=Bartlett MS |s2cid=91114210 |title=Measles periodicity and community size |journal=Journal of the Royal Statistical Society, Series A |volume=120 |pages=48–70 |year=1957 |doi=10.2307/2342553 |issue=1 |jstor=2342553}}</ref>
    
It is important to stress that the deterministic models presented here are valid only in case of sufficiently large populations, and as such should be used cautiously.
 
It is important to stress that the deterministic models presented here are valid only in case of sufficiently large populations, and as such should be used cautiously.
   −
重要的是要强调,这里提出的确定性模型只有在足够大人口的情况下才有效,因此应谨慎使用。
+
必须强调的是,这里提出的确定性模型只有在人群数量足够大的情况下才有效,因此应该谨慎使用。
 
        第2,218行: 第1,510行:  
To be more precise, these models are only valid in the thermodynamic limit, where the population is effectively infinite. In stochastic models, the long-time endemic equilibrium derived above, does not hold, as there is a finite probability that the number of infected individuals drops below one in a system. In a true system then, the pathogen may not propagate, as no host will be infected. But, in deterministic mean-field models, the number of infected can take on real, namely, non-integer values of infected hosts, and the number of hosts in the model can be less than one, but more than zero, thereby allowing the pathogen in the model to propagate. The reliability of compartmental models is limited to compartmental applications.
 
To be more precise, these models are only valid in the thermodynamic limit, where the population is effectively infinite. In stochastic models, the long-time endemic equilibrium derived above, does not hold, as there is a finite probability that the number of infected individuals drops below one in a system. In a true system then, the pathogen may not propagate, as no host will be infected. But, in deterministic mean-field models, the number of infected can take on real, namely, non-integer values of infected hosts, and the number of hosts in the model can be less than one, but more than zero, thereby allowing the pathogen in the model to propagate. The reliability of compartmental models is limited to compartmental applications.
   −
更准确地说,这些模型只适用于中东热力学极限,那里的人口实际上是无限的。在随机模型中,由上述推导出的长期地方病平衡并不成立,因为在一个系统中,感染个体的数量下降到1以下的概率是有限的。在一个真正的系统中,病原体可能不会繁殖,因为没有宿主会被感染。但是,在确定性平均场模型中,被感染的病原体数量可以呈现实数值,即被感染宿主的非整数值,模型中的宿主数量可以小于1,但大于零,从而使模型中的病原体得以繁殖。传染病模型的可靠性仅限应用于传染病。
+
更准确地说,这些模型仅在热力学极限中有效,在该热力学极限中,总体数量是无限大的。在随机模型中,由上述推导出的长期地方病平衡并不成立,因为在一个系统中,感染个体的数量下降到1以下的概率是有限的。在一个真正的系统中,病原体可能不会传播,因为没有宿主会被感染。但是,在确定性平均场模型中,被感染的病原体数量可以采用实数值,即被感染宿主的非整数值,模型中的宿主数量可以小于1,但大于零,从而使模型中的病原体得以繁殖。房室模型的可靠性仅限于区分人群类别的应用。
 
       
14

个编辑