更改

无编辑摘要
第8行: 第8行:  
Energy dissipation and entropy production extremal principles are ideas developed within non-equilibrium thermodynamics that attempt to predict the likely steady states and dynamical structures that a physical system might show. The search for extremum principles for non-equilibrium thermodynamics follows their successful use in other branches of physics. According to Kondepudi (2008), and to Grandy (2008), there is no general rule that provides an extremum principle that governs the evolution of a far-from-equilibrium system to a steady state. According to Glansdorff and Prigogine (1971, page 16), state that "In non-equilibrium ... it is generally not possible to construct thermodynamic potentials depending on the whole set of variables". Šilhavý (1997) offers the opinion that "... the extremum principles of thermodynamics ... do not have any counterpart for [non-equilibrium] steady states (despite many claims in the literature)." It follows that any general extremal principle for a non-equilibrium problem will need to refer in some detail to the constraints that are specific for the structure of the system considered in the problem.
 
Energy dissipation and entropy production extremal principles are ideas developed within non-equilibrium thermodynamics that attempt to predict the likely steady states and dynamical structures that a physical system might show. The search for extremum principles for non-equilibrium thermodynamics follows their successful use in other branches of physics. According to Kondepudi (2008), and to Grandy (2008), there is no general rule that provides an extremum principle that governs the evolution of a far-from-equilibrium system to a steady state. According to Glansdorff and Prigogine (1971, page 16), state that "In non-equilibrium ... it is generally not possible to construct thermodynamic potentials depending on the whole set of variables". Šilhavý (1997) offers the opinion that "... the extremum principles of thermodynamics ... do not have any counterpart for [non-equilibrium] steady states (despite many claims in the literature)." It follows that any general extremal principle for a non-equilibrium problem will need to refer in some detail to the constraints that are specific for the structure of the system considered in the problem.
   −
能量耗散和产生熵极值原理是在非平衡热力学中发展起来的概念,它们试图预测物理系统可能表现出的稳态和动态结构。在物理学的其他分支成功应用极值原理之后,我们对非平衡态热力学的极值原理进行了探索。根据 Kondepudi (2008年)和 Grandy (2008年)的说法,没有一个一般规则可以提供一个极值原理来管理一个远离平衡的系统向稳定状态的演化。根据格兰斯多夫Glansdorff和普里戈金Prigogine(1971年,第16页) 的说法,“在非平衡状态下... ... 通常不可能根据整个变量集来构造热力学势”。Šilhavý (1997)认为“ ... 热力学的极值原理... 对于非平衡稳态没有任何对应的原理尽管文献中有许多说法)。”由此可见,针对非平衡问题的任何一般极限原理都需要详细提及问题中所考虑的系统结构所特有的制约因素。
+
能量耗散和产生熵极值原理是在非平衡热力学中发展起来的概念,它们试图预测物理系统可能表现出的稳态和动态结构。在物理学的其他分支成功应用极值原理之后,我们对非平衡态热力学的极值原理进行了探索。根据 孔德普迪 Kondepudi (2008年)和 格兰迪Grandy (2008年)的说法,没有一个一般规则可以提供一个极值原理来管理一个远离平衡的系统向稳定状态的演化。根据格兰斯多夫Glansdorff和普里戈金Prigogine(1971年,第16页) 的说法,“在非平衡状态下... ... 通常不可能根据整个变量集来构造热力学势”。希尔哈维Šilhavý(1997)认为“ ... 热力学的极值原理... 对于非平衡稳态没有任何对应的原理(尽管文献中有许多说法)。”由此可见,针对非平衡问题的任何一般极限原理都需要在某些细节上参考问题中所考虑的系统结构所特有的制约因素。
     
90

个编辑