更改

大小无更改 、 2020年11月2日 (一) 02:11
无编辑摘要
第124行: 第124行:  
In other words, <math>C_H^d(S)</math> is the infimum of the set of numbers <math>\delta \geq 0</math> such that there is some (indexed) collection of balls <math>\{B(x_i,r_i):i\in I\}</math> covering S with r<sub>i</sub>&nbsp;>&nbsp;0 for each i&nbsp;∈&nbsp;I that satisfies <math>\sum_{i\in I} r_i^d<\delta </math>. (Here, we use the standard convention that inf&nbsp;Ø&nbsp;=&nbsp;∞.)
 
In other words, <math>C_H^d(S)</math> is the infimum of the set of numbers <math>\delta \geq 0</math> such that there is some (indexed) collection of balls <math>\{B(x_i,r_i):i\in I\}</math> covering S with r<sub>i</sub>&nbsp;>&nbsp;0 for each i&nbsp;∈&nbsp;I that satisfies <math>\sum_{i\in I} r_i^d<\delta </math>. (Here, we use the standard convention that inf&nbsp;Ø&nbsp;=&nbsp;∞.)
   −
换句话说,<math>C_H^d(S)</math> 是数字集合<math>\delta \geq 0</math>的下确界,使得在 ''i''&nbsp;∈&nbsp中存在一些球集合 <math>\{B(x_i,r_i):i\in I\}</math>  i 包含 s,对于每个 ''r<sub>i</sub>''&nbsp;>&nbsp;0 满足 i 中的和<math>\sum_{i\in I} r_i^d<\delta </math> (在这里,我们使用inf&nbsp;Ø&nbsp;=&nbsp;∞ )的标准约定。
+
换句话说,<math>C_H^d(S)</math> 是数字集合<math>\delta \geq 0</math>的下确界,使得在 ''i''&nbsp;∈&nbsp中存在一些球集合 <math>\{B(x_i,r_i):i\in I\}</math>  i 包含 s,对于每个 ''r<sub>i</sub>''&nbsp;>&nbsp;0 满足 i 中的和<math>\sum_{i\in I} r_i^d<\delta </math> (在这里,我们使用inf&nbsp;Ø&nbsp;=&nbsp;∞ 的标准约定)
    
===Hausdorff measurement豪斯多夫分形测量===
 
===Hausdorff measurement豪斯多夫分形测量===
66

个编辑